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Abstract

A program can face conditions where it is impossible to continue with the normal control

flow. Common reasons are erroneous input data or lack of resources. Most structured and

object-oriented programming languages provide mechanisms to deal with such errors. This

thesis takes a look at some of the most common ones.

It examines theoretical issues how different kinds of errors can be detected, and which general

possibilities there are to deal with them. Because eventually errors have to be treated by

human beings, considerable concern is taken at proper wording of error messages.

Consequently, it investigates how the language and its libraries support the programmer in

creating such wording.

To see how practical implementations deal with this, a set of simple example programs is

implemented in various languages. In particular, Basic, C, Eiffel and Java are studied. The

tasks to solve are converting a text string to a number, copying a file and detecting a bug

during runtime.

The findings are that none of the mechanisms allows simple generation of useful error

messages. They are either overly complicated and ill-structured or leave most of the work to

the programmer. Many of them just swallow errors on various occasions, allowing latent

errors to remain in the program. This can be seen as precondition to disasters, especially for

complex programs.



Preface

The main motivation for the topic resulted from my experiences with computers both as user

and programmer. As the first, I was constantly annoyed by the generally useless error

messages programs provide and the incomplete ways they can deal with errors. As the

second, I never really figured myself how to create programs that behave properly under such

conditions. I saw this thesis as a good chance to set the record straight for me.

 

Thomas Aglassinger

Oulu, 24.11.1999
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1  Introduction

The ability of a program to deal with errors is an important part of it. The world is not perfect,

and things can go wrong. Several books and papers collect stories in which computer

programs cause funny or terrible incidents (depending on the view point) because certain

error situations were not handled properly. Many computer magazines frequently publish the

most useless error messages users encountered.

There seems to be a common believe that all this is the programmer’s fault. If they were just a

little more careful when creating the program, and a bit more ambitious when wording error

messages, all this trouble could be avoided. Branches to engineer usability, fault tolerance or

software in general have been established long ago, promising to target at these problems.

Alas, things have not improved much. Some might even say, they have become worse.

1.1  Related Work

General means to detect and handle errors both in terms of hard- and software are discussed

by Lee & Anderson (1990). The human contribution to errors is explained by Reason (1990),

who is strongly influenced by work of Rasmussen. Norman (1983) reflects on how this should

be considered in the program design. Dain (1991) evaluates the state of the art in dealing with

input errors. Shneiderman (1997) gives general suggestions on wording of error messages.

Brown (1988) provides more specific guidelines, together with many examples. Laprie &

Kanoun (1996) explain how to apply the classical reliability theory. 

All examined programming languages support some sort of error handling, which is

consequently described in the standard documentation. In particular, this means special

function results and status indicators in C (Harbison & Steele, 1991), traps in Basic (Sharp

Corporation, 1989), exceptions in Java (Gosling et al., 1996) and assertions in C and Eiffel

(Meyer, 1997). Influential material from other, earlier languages can be found in

(Goodenough, 1975; Liskov & Snyder, 1979; ANSI & US Government Department of

Defense, 1983).

In the recent years, research has mostly focused on distributed and concurrent error handling,

with Campbell & Randell (1986) describing general issues. Several proposals and reflections

on existing languages exist (Romanovsky, 1997; Meyer, 1997; DeRusso & Haggar, 1998). I

decided to exclude these topics, as there are enough (unresolved) questions for comparably

simple non-distributed, single-threaded programs.
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Current work on error handling often centers on certain aspects, and more or less ignores

others. Fault tolerance and reliability engineering is mostly concerned with keeping a system

running - despite errors. Publications from this area rarely consider to come up with an error

message. Usability literature on the other hand tends to end up in unspecific guidelines which

are difficult to apply for a programmer - especially on errors that are not caused by the user

input. Programming language designers are concerned about directing the control flow to

error handlers, but don’t give much advice what to do after that. Literature on algorithms,

patterns, design methods and system architectures is so busy reflecting on the normal cases,

that there is no place left for thinking about errors.

Another point rarely being considered is the notion of a latent error. Informally, it is an error

that has no visible effect to the user, making him believe that everything is all right though it

isn’t. As it turns out, such errors can be introduced by the programming language, without the

application programmer being able to do anything about it. They happen on a level lower than

he can express. Language definitions either treat them as undefined cases, or bluntly make the

program ignore them.

This thesis is not going to reveal any new facts on error handling. However, it tries to give a

more complete view by trying to combine the above mentioned rather narrow perspectives. It

attempts to stay simple and specific enough so that many considerations can be applied by

programmers directly. Although the issues are examined from several different angles, error

messages are a recurring theme. Latent errors are not seen as rare cases without practical

relevance, but as serious flaws. But probably the only thing really new is the attitude the

problem is approached with.

1.2  Research Method

The research problem is addressed by the following questions:

What are errors, speaking in terms of a program? 

What different types of errors exist? 

How can they be detected? 

How can they be reported? 

How might they be avoided? 

How can a program respond to them? 

How do different programming languages allow to deal with all these issues?

The research works in a conceptual analytical and constructive way. It is mostly placed in the

area of information technology, but obtains a lot of influence from other areas such as
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cognitive science and sociology. Despite the title, reflections on programming languages

make a relative small part of it.

The conceptional analysis is carried out by collecting theoretical considerations from

literature. This gives a general picture of what error handling means and what are the

concepts involved. It describes the different ways a program can respond to errors, and

reflects in which situations they are appropriate. It presents a simple scheme to obtain good

error messages that does not require much effort from the programmer.

In the constructive part, it looks at different existing error handling mechanisms actually

implemented in certain programming languages. Roughly, they are: in C, routines can return

special results to indicate errors, e.g. a function might return a pointer to an opened file handle

or NULL if it failed. C also supports status indicators, e.g. an integer variable errno (for error

number) holds 0 to indicate success, and other values to point out different errors. In Basic, a

trap handler can be assigned with a on error goto statement, to which the control flow is

changed automatically upon detection. In Java, exception objects refine this concept by

allowing to attach more details to an error. In Eiffel, assertions are used to detect bugs during

runtime and to document a routine interface.

All the mechanisms are evaluated for a set of criteria that are derived from the theoretical

parts. This is supported by implementing a set of small example programs. In particular, the

tasks to solve are: converting a text supposedly consisting of digits into a number, copying a

file and detecting a bug. Finally, there is a critical discussion of possible inconsistencies

between theory and practice that also outlines solutions to the severest problems.

1.3  Overview

Chapter 2 introduces the terminology used within the rest of the thesis. It gives an overview

of the basic steps and concepts involved in error handling. Related terms and conflicting

terminology from other areas are shortly discussed.

Chapter 3 discusses error handling from a user’s point of view. It describes possible program

responses to errors and considers when they are appropriate. It summarizes general guidelines

on wording, sentence structure and highlighting mechanisms useful for error reporting.

Finally, it illustrates a simple scheme to create good error messages derived from the

contradiction used to detect the error.

Chapter 4 characterizes different kinds of defects and error situations. It discusses how to

detect the various types of errors and what details to report to the user.
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Chapter 5 analyzes various error handling mechanisms provided by widely used programming

languages. It describes all these mechanisms, their underlying ideas and some implementation

details. The analysis is done by validating every mechanism for a set of criteria and

implementing some simple example routines.

Chapter 6 gives a discussion of questions raised during the analysis. For several issues, it is

not easy to decide whether they are a "good thing" or not. Solutions to some of the most

apparent problems are outlined.

Chapter 7 shortly summarizes the research results and points out possible future directions.

1.4  How It Really Happened

The above description would suggest that there was such a thing like a master plan from the

beginning, and all I did was execute it. In fact, there wasn’t. Initially, my naïve assumption

was that somebody must have clarified the whole issue to some extent, and I just have to

summarize a few theoretical considerations, see how they work with existing implementations

and write about them.

As it turned out, nobody seems to have a real clue how computers can handle errors. Even

better, people rarely speak about errors rather than exceptions, faults, defects and a couple of

other terms. As a result, I had to dig through the various contradicting definitions and find a

terminology that would at least work for me. The next problem then was the theoretical

background of error handling. It took me a horrible long time to find out that people who talk

about "fault tolerance" also discuss error detection and recovery.

Thus, for quite some time I worked on the analysis and comparison of different programming

languages. From the beginning, I had planned to see how to convert a string to an integer and

how to copy a file. Another idea was to write a little more complex program such as a

command line pocket calculator and show how to deal with a bigger set of errors at the same

time. But after my initial experiments, I soon found out that current implementations are far

worse than I had noticed in the recent years. Consequently, I soon discarded the calculator 

idea.

After a couple of months I was convinced there is no useful error handling mechanism,

nobody knows what is going on, and apparently nobody really cares. However, my advisor

didn’t seem to be very fond of my conclusion and suggested I should write something

constructive, too. Even if I might be right.
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At this point, things started to become difficult. How is a student supposed to fix the mess

others (with many of them way smarter than me) didn’t manage to cleanup within the last

decades? Anyway, I turned away from information technology and computer science in favor

of a couple of books that had no real relation to programming. These finally brought me on

some more constructive track. I then started to compile a list of error situations and structure

it. This slowly gave me a general understanding of the nature of errors. (Although I’m still not

sure if my classification makes sense.) In a retrospect, most of the useful literature came from

the seventies or from outside the plain computer context.

Eventually I managed to collect theoretical considerations from several areas for which I

didn’t have a deeper understanding. This also seems to be a reason why until yet nobody

really tried to write something solid on error handling: because nobody can know it all.

Anyway, not having any reputation to defend, I bluntly wrote about everything. In a few

years, probably I will have a jolly good laugh reading all those that are wrong.
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2  Terms

This chapter introduces the terminology used within the rest of the thesis. It gives an

overview of the basic steps and concepts involved in error handling. Related terms and

conflicting terminology from other areas are shortly discussed. 

2.1  Program, System, Component

A computer can be seen as a system to execute a program. A simple view of the term 

program is to claim that it takes an input and creates an output from it:

OutputInput Program

Figure 1: A Program

The input is essentially provided by a user, who also has a certain desire in the output. The

program is a sequence of instructions and rules that specify how the output should be created.

But a program is only an abstract software system and not enough to get the output. It also

needs a hardware system, which provides the following services:

1.  It interprets the program by executing the instructions (CPU) 

2.  It stores both input and output in resources (memory, disk, ...) 

3.  It acts as an interface between program and user, allowing to enter the input and read the

output (keyboard, mouse, display, ...)

The term system is extremely general and has a meaning in nearly every discipline - also

outside the computer context. Nevertheless, a possible definition is that a system consists of a

set of components which interact under the control of a design.

A component can be seen as another system. This recursion eventually ends in atomic 

systems, for which any further internal structure cannot be discerned, or is not of interest and

can be ignored.

The design also is a system, but is has some special characteristics: it controls which

components interact, and how. It also determines the way in which interactions between a

system (component) and its environment (containing system) influence the components. Thus

it must ensure that each component receives as input an appropriate subset of the outputs from

all other components. 
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Component

Sub-components

Containing system
(Environment)

Input Output

OutputInput

Figure 2: General system component

A more detailed discussion of these terms can be found in (Lee & Anderson, 1990).

Returning to programming languages, the component structure is achieved by mechanisms

like routines, records, modules and classes. Routines are common for both structured and

object-oriented languages. They differ mainly in how they allow to organize and access

routines, and how routines are bound to datatypes.

2.2  User, Administrator, Programmer

Basically, there are three different kinds of human beings which have a special relation to the 

program:

1.  The user is the person providing the input and also has some interest in the output. He is

the reason why the program is executed at all. 

2.  The administrator is responsible to provide a working environment for the program to be

executed in. This means both hardware components (e.g. memory, network cables, storage

devices) and external software components (e.g. function libraries, device drivers) 

3.  The programmer creates the program. He is responsible for the design and code, and

without him, the program would not exist at all.

This distinction does not necessarily mean persons rather than roles. For instance, many users

of personal computer systems also act as administrators. And very few programs are actually

created by one single programmer rather than by a whole team with tasks separated between

all the members, aiming at a bigger market than one particular user. All programmers are also

users in some sense as they use development tools such as compilers, editors and function

libraries to create the new program. For some programs user, administrator and programmer
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are the same person (in particular in-house tools).

2.3  Problem, Defect, Error

Generally, a problem is a subjectively unsatisfactory state. For this discussion this usually

means that the user won’t get the desired output from the program. Independent of the actual

cause for the problem, the user is unlikely to obtain new versions of the program or

recommend it in his circle of acquaintances. This in turn causes a problem to the programmer.

There are four ways for the programmer to avoid this situation: first, he can create a program

that does not cause the problem to the user. Second, he can create one that helps the user to

find out the cause for the problem and remove it. Third, the programmer can refocus on

advertising and hope that the user is stupid enough to use the program anyway. And forth, he

can use certain techniques to make the user so dependent on the program that he will not

consider any alternatives. The last two methods are widely used and have proven successful

for solving the problem from the programmer’s point of view (Thimbleby, 1998a; Thimbleby, 

1999). They are however not very interesting from the viewpoint of computer science rather

than sociology and marketing. Thus I’m going to focus on the first two.

Problems are caused by defects, meaning a non-fulfillment of a requirement. Defects simply

exist. However, most defects can be removed by performing changes on the item that caused

them. For that, I introduce the term error. The error is a model of the underlying defect that

makes it possible for the program to detect and handle it. These terms have a certain relation

between each described in figure 3.

(result)(model)(cause)

Defect Error Problem

Figure 3: Relation between defect, error and problem

An error is caused by a defect. The problem would even be there if there wasn’t any error. A

program can happily crash or lose data without the programmer wasting a single thought on

any possible defect at all. Putting it that way, errors are a model to deal with defects. In most

cases, an error still imposes a problem for the user, as it interrupts the normal control flow of

the program which would create the output. Therefore it is considered "subjective 

unsatisfactory".
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2.4  Specification, Correctness, Acceptability

One of the myths of computer science is that correctness is the premium quality of a program.

To be correct, a program simply has to act according to a specification. The specification

must then be unambiguous, consistent, and complete. After that one has to fiddle a bit with

design issues, maybe refine the specification iteratively, and eventually can do the

implementation mostly automatically (Dromey, 1989).

In practice, this is rarely the case (Beizer, 1990). Lee & Anderson (1990, 33) give a simple

example of a computer system that is struck by lightning. Nearly every program will behave

in an arbitrary fashion. In particular, the nifty merge-sort routine for which some skillful

mathematician proved two minutes ago that it is correct.

A less illusive goal than correctness is acceptability, which also refers to a set of conditions

describing the current state of the program. However, the unrealistic need for completeness is

dropped. Still it has to be unambiguous and consistent. Programmer and user then have to

agree how close acceptability converges with correctness.

The main problem about acceptability in practice is that usually only the programmer decides

about it. This has lead to the term "good enough software", meaning that it’s good enough to

be sold to users who are naïve enough to buy it and enter a never ending upgrade cycle. Or as

the saying goes: Not good is good enough to release.

2.5  Robustness, Reliability, Applicability

Acceptability mainly aims at providing a correct output. This however is not the only

requirement for a "good" program. Another one is robustness, meaning to behave

"reasonably" under a wide range of circumstances, especially those which don’t allow to

produce an output for some reason (Liskov & Snyder, 1979). In simple words it means that a

program should not just quit without any further diagnosis if it can’t compute the output. This

again depends on how much effort the programmer wants to invest.

A more specific term is reliability, commonly defined as a function R(t) which expresses the

probability that the system will be able to produce output according to its specification

throughout a period of duration t. The well established theory of reliability modelling makes it

possible to predict this time. But even more important, reliability can also simply be

measured. The Mean Time Between Failures (MTBF) probably is the most well-known

indicator (Laprie & Kanoun, 1996).
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Still this is not enough if the program lacks applicability to the user’s needs. For instance, if

the user wants to compose a music tune, the best paint program won’t help him. Finally, it is

always the user himself who decides whether a program is useful or not. Although the

program itself can’t know that, it nevertheless should make the decision about applicability

easy for the user.

2.6  Error Handling

If an error occurs during a routine, it has to do something about it - it has to handle it. First of

all, the error has to be detected. Only after that, the routine can recover to some save state.

Eventually, the error can be reported, either to the calling routine or the user.

The ultimate reason for error handling is to notify the user that there is a defect and provide

him with information to fix the problem.

2.6.1  Error Detection

Before a routine can do anything about an error, it has to detect it. Essentially, there are two

ways to detect an error: the first one is that a sub-routine detected an error and reported it

back to the caller. The second is that there is a contradiction. This means that a value or state

does not match an expectation. General ways to create expectations to provoke contradictions

are (adopted from Lee & Anderson, 1990;):

Replication checks, basically meaning a comparison with a complete backup. 

Coding checks don’t need a complete backup but only give a "summary". Examples are

various checksum algorithms like parity or CRCs. 

Reasonable checks validate conditions that must be maintained, for example array indices

must be within a certain range, and a linked list must not contain any cycles. 

Reversal checks validate that the output can really be a result of the input. This only works

if there is an inverse function. For example, a function to compute the square root of x

could check if the square of the result yields x. (At least in theory; thanks to floating point

math, this won’t work. But the example outlines the idea.) 

Timing checks, where a certain operation did not finish within an expected period of time.

How and on which occasions these checks can be applied to identify specific errors is

discussed later in detail.
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2.6.2  Error Recovery

At the time a program encounters an error, in most cases one of its components is in an

inconsistent state. Speaking less abstract, this usually means that resources have been

allocated to facilitate the computation of the output, routines have been called and changed

the program state, while other routines where only intended to be invoked.

In theory, error recovery is a general concept applicable to all systems that can easily be

implemented, e.g. by taking a "snapshot" of the program and its state before invoking a

routine. Provided that all recovery operations were successful and the snapshot was taken at a

time when the system was not in an erroneous state, error recovery can remove all defects

from the system (Lee & Anderson, 1990). In practice, the following problems arise:

1.  Taking the snapshot is usually too expensive. 

2.  Recovery operations might fail. 

3.  Some components are unrecoverable, for instance there is no way for the program to

snapshot and restore the user. (At least not to our current knowledge.)

In practice, program components instead choose one of the following ways to recovery from

an error:

Halt the whole program. This is the most violent way to deal with errors, and programmers

should try to avoid it. Sometimes this is not possible, in particular when crucial hardware

components fail or bugs become apparent. 

Reset the current component, meaning that the component looses all information about its

current state, often including the user input. 

Terminate the current routine. In most cases, this is rather violent and can easily turn the

calling component in an inconsistent state. Nevertheless, in some simple cases this is a

proper way of recovery. 

Cleanup and then terminate the routine. This basically means to "undo" all effects of the

operation interrupted by the error. In most practical cases, this is the way it should be done.

Halt and terminate are trivial to implement. All serious programming languages support

functions named like abort or die to stop a running program. (The naming seems to reflect

the violent nature of such an action.) Terminating a routine is generally also trivial. Reset can

sometimes be implemented by setting state variables to defaults. But often, reset and cleanup

requires a lot more effort, and is very cumbersome without any support of the programming 

language.
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Ideally, recovery works hierarchically, meaning that a component can recover by recovering

all its sub-components, together with its local information. Then, a program can be written so

that it is able to recover from errors that do not require any change in its physical

environment, in particular interpreting hardware and user. Still, recovery can imply data loss

for the user. Another interesting point arising is how languages behave if the recovery actions 

fail.

2.6.3  Error Reporting

Error reporting can happen in two ways: first, the report can be kept "internal", where the

failing routine just informs the calling routine and leaves further actions to it. Second, the

routine can decide that the user has to be informed.

An internal error report usually consists of a couple of data that describe the problem,

generally error codes and references to relevant objects. This is appropriate for a programmer

who should write some error handling code for a calling routine.

If however the user should be informed, this internal representation somehow has to be turned

into a human-readable, meaningful error message. Sometimes this can mean to consult the

administrator or programmer. Generally, error messages should be specific and precise,

giving exact information about the error and its cause, constructive, suggesting how to

proceed and defensive, blaming the system rather than the user (Shneiderman, 1997). Proper

error reporting may make the difference between being able to use a program and obtain

results or being frustrated and unable to do anything with it. 

2.6.4  Error Correction

The information of the error report is used to identify the underlying defect or the

consequently apparent problem, and correct it. This can again happen in two ways: first,

automatically by the program, and second, manually by the user, administrator or programmer

(depending on the type of error).

Automatic error correction, though sounding seductive, imposes a lot of problems. Different

to recovery or manual correction, there is no general scheme how to do it. It needs to be part

of the design, and basically has to be implemented differently for every case. Often, there is

no proper automatic corrective action. But what’s maybe more important, it can significantly

impair the user’s understanding of the system, and might cause many subsequent errors or a

major annoyance.
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2.6.5  Defect Avoidance

Many defects can be avoided - and consequently, resulting errors and problems. But when

toying around with programming constructs, implementation details and fancy data structures,

programmers tend to forget that. Weinberg observes that "problem-avoiding behavior [...] is

intelligent behavior at its highest, although not very intelligent if one is trying to attract the

eye of a poorly trained manager. It will always be difficult to appreciate how much trouble we

are not having" (Weinberg, 1971, 165).

Mechanisms to avoid defects are:

Simplicity, meaning to avoid complexity. Simple systems are easier to comprehend, modify

and adopt. There are several ways to achieve that, with the popular ones being: Omission,

meaning to get rid of features that are unneeded. Consistency, basically meaning to do

similar things in similar ways, thus reducing the cognitive memory load and increasing the

hit-rate in finding existing "patterns". Partitioning decomposes a system (and the problem

it is supposed to solve) into its constituent parts. This is done by establishing a vertical

hierarchy to express increasing detail, and a horizontal hierarchy decomposing the problem

(Pressman, 1997). (Lee & Anderson, 1990) call it the principle of "divide and hope to

conquer", which avoids that system is constructed as a monolithic entity. Instead, it it is

built as a coherent assembly of component sub-systems. 

Conservatism, meaning reluctance to change. It avoids that new defects are introduced into

a system. Belady & Lehman argue that any system that is used undergoes continuing

change, and that as a result its structure inevitably degenerates (quoted in Lee & Anderson, 

1990, 46). In a more practice oriented view: "If it ain’t broken, don’t fix it. Stable systems

are stable because they don’t change much. (Duh.)" (Halfhill, 1998)

Mechanisms that avoid further defects after one already occurred, or at least reduce its impact 

are:

Independence, to avoid that defects spread over a system and also infect other components

that formerly had no relation to the defect. It can be measured using two qualitative criteria: 

cohesion, meaning that a cohesive component should (ideally) do just one thing, and 

coupling, measuring the interconnection among components (Pressman, 1997). 

Redundancy, meaning an exact copy of a component exists which can be used if the

original fails due to physical defects. 

Diversity, meaning that a copy of a component exists using a different implementation with

the same specification. The copy might be immune to design defects that can make the

original fail. 
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Replicability, to create an exact copy of a system simplifying redundancy. This is trivial for 

software.

Notably, defect avoidance has to be part of the design and can only be considered before the

system becomes operational. Furthermore we should not expect all defects to be avoidable.

But this is no excuse for not even trying.

2.7  Discussion

So far, terms were introduced and explained without reflecting much on them. This seemed

appropriate for explaining the basic ideas of error handling without confusing details.

Although the above terminology will be used throughout the rest of this thesis, there are some

issues that require further clarification.

2.7.1  Conflicting Terminology

Many of the terms defined above have different meanings, not only in other areas of science,

but also speaking in terms of computer jargon. This is a summary of other possible definitions

and a rationale why they have not been used above.

Reason claims that the psychological study of human error does not require a precise

definition due to its inductive nature and suggest as working definition to take error "as a

generic term to encompass all those occasions in which a planned sequence of mental or

physical activities fails to achieve its intended outcome, and when these failures can not be

attributed to the intervention of some change agency." (Reason, 1990, 9) Still he concedes

that this has merely proven useful in a psychological rather than a philosophical sense.

A popular definition used in many other sciences is

Error = True value - Approximation

Here, the true value is what the user wants to get, and the approximation is what he really got.

Generally the true value is a number, and the reason for the approximation can be found in

round-off errors, experimental error (probably arising from measurements) and truncation

errors. As a result, the actual value of the error rarely can be evaluated exactly, but only be

estimated. There is no such thing as a true value, but only an interval within which the true

value is assumed to reside with a computable probability. Sophisticated methods exist to

predict this interval, in particular when errors are propagated through several numerical

expressions (Kreyszig, 1993). A classic example is the representation of floating point

numbers in computers. For instance, with many formats the value 0.1 can not be expressed 
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exactly.

Discussing programming in a non-numerical context, this definition is not very helpful for

several reasons:

1.  If we would know the true value, in most cases there would be no need to create the

program. 

2.  Programs process data as exact digital bit sequences, there is no approximation. 

3.  For most complex data structures, the minus operator (-) is not defined.

Clearly, these errors happen while converting analog real world data to a digital

representation for the program. Evaluation of the impact on the accuracy of the output is not

part of the program, but the programmer and the user. To be realistic, not many programmers

and users are aware of these facts (Kahan & Darcy, 1998). Despite all this, the above

definition essentially reassembles that of a contradiction as used earlier:

Contradiction = Computed value does_not_match Expectation

Contradiction is no fuzzy number but an explicit boolean value representable by a single bit. 

Computed value and expectation can both be complex data structures, and the 

does_not_match operator is a lot easier to define than the minus operator. The contradiction

however is not the whole error, rather than the only way to detect it.

Pressman (1997) defines error as "some flaw in a software engineering work product or

deliverable that is uncovered by software engineers before the software is delivered to the end

user" (Pressman, 1997, 82) If the same flaw is uncovered after delivery to the end user, he

speaks of a defect. While this distinction might be of importance for the commercial success

of a program, it does not have much influence on the program code. Apart from that, he does

not specify what exactly he means by "some flaw".

Meyer (1997) uses the following terms to denote "software woes":

An error is a wrong decision made during the development of a software system. 

A defect is a property of a software system that may cause the system to depart from its

intended behavior 

A fault is the event of a software system departing from its intended behavior during one of

its executions.
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He then identifies the a causal relation: errors cause defects, which in turn cause faults. This is

in many ways similar to the use of defect/error/problem I’m using, but dismisses the impact

of defects (or errors in his words) resulting from physical source. The fact that computers rust

simply cannot be contributed to a programmer’s decision. Next, "intended behavior" is a

rather defuse issue, which is probably best commented on by the following user statement:

"I know you believe you understood what you think I said, but I am not sure you realize

that what you heard is not what I meant." (quoted in Pressman, 1997, 286).

Another term often used in the meaning of error is exception. There were however several

reasons not to use it:

1.  Exceptions don’t necessarily indicate something "wrong", but something that just rarely

happens. Thus it can easily be part of the "normal" control flow and result into an output. 

2.  Exception is widely used to refer to one particular technical concept (out of many) to

handle errors. This would have been confusing for the later discussion.

I came to suspect that scientists and engineers feel uncomfortable when using such common

words as error because even the man from the street could understand what they are talking

about. An example for this claim can be found in (Scheuning, 1996). The author summarizes

several definitions from official sources (ISO, IEEE, ANSI, ...) to substitute the word error in

a sample text excerpt by words such as mistake, fault, failure, deviation and problem, while

also discussing defect, nonconformity and omission. Personally, I can not endorse his claim

that the example paragraph become more understandable, and would suggest to use a less

terse wording. At best, his definitions might work within a rather small group of people with a

quite similar background.

Strong & Miller (1995) give a more business oriented view of exceptions as "situations that

cannot be correctly processed by computer systems alone, and thus require manual

intervention to produce output that meet organizational goal". Their article is a report from

the "real world", where it has been proven several times that a binary view of the world as

correct or in error is too narrow. Still, I will advocate that a programming language should

provide a deterministic set of binary mechanisms to deal with a non-binary world. Resolving

this mismatch on a higher level is the job of the programmer and its creativity, not the

language. One does not try to build a less skewed house by using awry nails.

Among other definitions, Raymond et al. (1999) first describe program as "A magic spell cast

over a computer allowing to turn one’s input into error messages". Although this has been

written with a humorous intention, it is remarkable that programs created from people with a

similar cultural background to the authors (hackers) are infamous for their notoriously bad
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error handling code (if there is any at all), not to speak about the wording of their error

messages. Further notably, programmer remains undefined in this publication. Opposed to 

real programmer, which deserved a considerable amount of space and devotion.

Meyer (1997) uses the term software engineer instead of programmer. In his discussion about

multiple inheritance, he suggests a class SOFTWARE_ENGINEER, which inherits from 

ENGINEER, POET and PLUMBER. Although I found this a remarkable fitting description,

I was slightly repelled by the word "engineer". This can be explained by my cultural

background. In Austria, there are two levels of engineering: first, the academic level 

(Diplomingenieur), and second, the common one (Ingenieur), for which one doesn’t need to

visit any university, but only a special school. The cliche then goes something like this: the 

Ingenieur doesn’t really know what he is doing but simply applies a set of rules he never

reflected on. Most of the time, he somehow manages to make things work, but usually far

worse then he is able to confess - especially to users. Nevertheless, in most cases he can get

the desired amount of money. The Diplomingenieur on the other hand is all the time busy

objecting the rules of the Ingenieur, pretending to look for better ones. Normally, without

success. Different to the Ingenieur, he doesn’t produce anything the user could apply on real

world problems. Nevertheless, in most cases he can get the desired amount of respect in

academic circles. Now there are people who observe that many programmers are a mixture of

these two species: neither do they understand what they are doing, nor do they have any

intention to solve real world problems. Although this might be true for several of them, it is

not the kind of programmer I’m hinting at.

Another popular wording is to distinguish between computer scientist on the positive side and

programmer on the negative. Until yet, I couldn’t think of a set of criteria that makes you a

computer scientist opposed to a programmer. My personal experience is that most people who

call themselves computer scientist have no idea what it’s like to create a program with more

than 1000 lines of code. So they definitely have no relation to the programs discussed herein.

All this however yields to the observation that pretty much every one can write a program that

produces an output that can satisfy the user. Still, it doesn’t make him a programmer. Because

of that, I came to see programmers as "people, who create programs" (as defined above).

These are distinct from the "people who write programs". An easier to understand analogy

could be a poet, who creates poems. But not everyone who writes a poem automatically

becomes a poet.

As a final note, I’d like to mention that other people might prefer different terms for the same

meanings. As a conclusion, it can be said that it’s not the term, but the meaning that matters.
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2.7.2  People vs. Programs

At this point it is appropriate to emphasize that the discussion is about programs, not people.

Though there seems to be some consent that the human "program" is the mind, opinions differ

about its specification.

Pinker gives an interesting view: he sees the mind as a "system of organs of computation,

designed by natural selection to solve the kinds of problems our ancestors faced in their

foraging way of life, in particular understanding and outmaneuvering objects, animals, plants

and other people" (Pinker, 1997, 21). He observes that the mind is capable of solving certain

illposed problems without a literal solution. It does this by providing assumptions for missing

information. These assumptions can then be coded into genetic information and passed on to

children. According to the logic of natural selection, the ultimate goal of the mind is to

maximize the number of copies of the genes that created it. But he opposes common

misunderstandings, like that spreading ones genes is the point of human life or that natural

selection is a puppetmaster that pulls the strings of behavior directly. He also explains how

concepts seemingly useless for this specification (like art, humor and friends without sexual

interest) fit into this picture.

Other views have been proposed by philosophers throughout the time, with none of them

being accepted by the human race in general. Zima (1997) presents many of them from a

contemporary perspective but, like Pinker, opposes fashionable beliefs when demanding:

"Ein Theoretiker zerstört seine Theorie nicht, wird nicht zum Ideologen, indem er einen

besonderen - liberalen, konservativen, sozialistischen oder feministischen - Standpunkt

einnimmt. Er zerstört sie im Diskurs, sobald er als für den Ablauf verantwortliches

Aussagesubjekt den semantischen Unterschied zum manichäischen Gegensatz, zum

Dualismus werden läßt, seine Rede als semantisch-narrative Konstruktion mit der

Wirklichkeit identifiziert (verwechselt) und dadurch Gegenentwürfe und

Gegenargumente monologisch ausgrenzt." (Zima, 1997, 369).

Another difference is how the human mind and programs change. For their whole life, people

learn. They reflect upon the "input data" they get while living. They obtain new experiences

and interaction patterns with the world, which are stored in the mind and modify its

"program". Computer programs on the other hand don’t change depending in the input data.

They just select from a limited amount of interaction patterns hard-coded by the programmer.

The input has influence on the behavior, but the program will not try to modify its code when

it experiences something outside its specification.
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Nevertheless, certain parts of the human mind are similar: the aforementioned assumptions

inherited from ancestor. Interestingly, they don’t change during the life time of the individual

being, but during reproduction. Pinker observes:

"Natural selection is not the only process that changes organisms over time. But it is the

only process that seemingly designs organisms over time" (Pinker, 1997, 159).

This "design" is based on random errors during copying the genetic information. While most

copies will change to the worse, some will have minor improvements - out of plain dumb

luck. When they compete with others over the limited resources in the world (which forbid

them to reproduce endlessly), their lucky improvement will make it easier to reproduce, and

thus to pass them on to the next generation.

Computer programs written in structured or object-oriented languages are quite different: it is

trivial to create a byte-by-byte exact copy of a program. That’s why software piracy is so

common. But changes are only induced by the programmer, and hopefully only after careful

considerations. Still, there is natural selection: it is the user, who decides whether a program

is used or not. Without users, the programmer will soon lose interest in changing the program.

The program can very well change data, but it doesn’t change its own code.

For the sake of completeness, it’s inevitable to mention that there are of course programs that

modify their own specification: neural networks. But their "programming language" is usually

distinct from structured and object-oriented languages. It is difficult to predict what’s really

going on. Probably worse, such networks are extremely difficult to change if their output does

not match the user’s requirements. For instance, Cohen & McCloskey trained a network to

"add 1 to any number". When it later was trained to be capable to also "add 2 to any number",

the new problem sucked the connections weights over to "add-2" and made it forget

everything it had already learned about "add-1" (Pinker, 1997, 122). The application of such

programs generally is not to reliably turn exact input into deterministic output, rather to come

up with some "sort of" solution for which programmer’s can’t find a useful specification (e.g.

reading handwriting, searching pictures after keywords etc.).

2.8  Summary

This chapter introduced the required terminology to further discuss error handling. As it

turned out, many established terms are not very useful for the restricted context of

programming languages. The following notions deserve a close look:
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A program has the following atomic components: the interpreter hardware, which executes

it, the storage hardware eventually used to obtain input and store output, the user, who

specifies the input and has desire for the output, the administrator, who is responsible for

hardware and software-components to be in proper shape, and the programmer, who created

the program.

Realistic values to judge about the quality of a program are acceptability, meaning that it

conforms to specification which in practice always is incomplete, robustness, meaning that it

behaves reasonably under error conditions which the specification usually doesn’t describe,

and applicability, meaning that the user benefits from the output. In practice, their fusion can

be measured as reliability.
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3  The User’s View

This chapter discusses error handling from a user’s point of view. It describes possible

program responses to errors and considers when they are appropriate. It summarizes general

guidelines on wording, sentence structure and highlighting mechanisms useful for error

reporting. Finally, it illustrates a simple scheme to create good error messages derived from

the contradiction used to detect the error. 

3.1  Program Responses to Error

General ways in which a system can respond to errors are discussed by Reason (1990), which

are adopted from (Lewis & Norman, 1986). However, his elaboration only focuses on

potentially desirable responses. Because this would be incomplete, I’m also describing some

others rarely talked about.

3.1.1  "Let’s Talk about It"

The program begins a modal dialogue where the user receives a message describing what’s

wrong. Common choices are to retry or cancel the operation, read the online help on the

current operation, read the online help on the error message or obtain more details by e.g.

activating a debugger environment. The actual choices of course depend on the error, and not

all of them are useful or available for all kinds of errors.

In almost all cases, this is the most appropriate response. First, because it should give a fairly

complete description of the error, and second, because it induces a forcing function, meaning

that it "prevents the behavior from continuing until the problem has been corrected" (quoted

in Reason, 1990, 161). A simple example taken from the real world is a locked door. Unless

the "user" turns the appropriate key, the door won’t open.

3.1.2  "Gagging"

A gag also is a forcing function. Different to the "let’s talk about it" strategy, gags do not

offer any explanation why they prevent the user from executing a certain operation.

This can be useful in cases like direct manipulation interfaces, where popping up dialogs all

the time would quickly be considered an annoyance. An example is a mouse pointer that can

not leave the visible screen area. If the user tries to move "outside", the pointer remains at the

border. In this case, the error is "obvious". But for many applications, gags are insufficient

error feedback.
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3.1.3  Warning

Whereas gags present a block to anything but appropriate input, warnings simply inform

about potentially dangerous situations. The user is left to decide the correct course of an 

action.

Meyer opposes this concept with the following observation: "Warnings may be viewed as an

act of cowardice: you don’t dare to refuse the submission because it "might" work, but you

don’t make any commitment either as to the effect of processing it, because it might just as

well not work! This is really a way of passing on your responsibility to your poor users."

(Meyer, 1998). Consequently, warnings can be seen as indicator for a defective design.

3.1.4  "Teach Me"

On detecting an unknown or inexact input the first time, the program asks the user what to do

about it. After that, it knows what to do in future: accept it, or treat it as error, but don’t ask 

again.

This is common for applications having to deal with concepts from the real world, which is

often highly indeterministic and unpredictable. An example is a spell-checker, that considers

the user’s own name as spelling error. Because no dictionary will ever contain all the names

human beings invent all the time all over the world, serious spell-checkers offer a function to

extend the dictionary with new words. This declares a former typo to be perfectly correct.

3.1.5  Automatic Correction

The program tries to guess some action that corresponds to the user intention. This basically

is, what all users seem to wish for. However, as the word "guess" suggests, the underlying

mechanisms are rarely very deterministic.As this is a complex issue, it deserves a detailed

discussion later.

3.1.6  "For some reason it doesn’t work" Syndrome

Until yet, all responses have been more or less desirable. As practice shows, programs

sometimes select from less popular choices.

It so not so uncommon that a program neither creates an output nor an error. This completely

leaves the task of sorting out what went wrong to the user. Reason claims that this is only

helpful when adequate feedback information is available, but is unable to give a specific

example. 
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I thus rejected Reason’s original term "Do nothing". I cannot think of a sensible design

decision why a program should do that. Most of the time this happens because the

programmer did not consider a certain error situation at all. Such a behavior can be

considered a bug. Although it does not have any negative impact on the state of the program,

it confuses the users.

3.1.7  Halt

Sometimes there is no sensible way to continue, though the program is still in charge. For

example, when an internal consistency check revealed that the program has a bug. Here, it is

often the best thing to stop all activities to avoid that the error spreads further.

A halt usually implies one of the following effects:

Data loss, meaning that the user partially lost his data, typically the input of the current

session or everything since he saved the last time. 

Data devastation, meaning that certain data were destroyed permanently. This can happen

when the program was halted in the midst of an action like updating a database record.

However, as the program is still in charge, it can estimate the extent of data affected, and tell

the user in an error message. Different to "Let’s talk about it", there are no dialog choices like

"Retry" to influence the control flow from the outside. They only option is to quit. (Online

help might be provided, though).

3.1.8  Reset

Sometimes, a halt is not a proper response insofar as the system should remain available. In

such a case, the program might decide to reset itself, meaning to start from the beginning.

Although in most aspects similar to halt, most of the functionality and the data are available

again. A reset doesn’t necessarily have to affect the whole program. Sometimes it can be

possible to reset only the routine context.

But like halt, this usually implies data loss and has to be reported to the user.

3.1.9  Crash

If a program does not know how to handle an error, it can easily crash. Halfhill (1998)

discusses the anatomy of a crash, and essentially all reasons for a crash are missing or

improper error handling.

23



A crash is very annoying because it does not give any clue to the user why the program

doesn’t work (unlike halt and reset). Furthermore, it is almost impossible to estimate the

extent of the problem on the data. The only "nice" thing about a crash is that it is completely

obvious, and the user is aware that there’s something wrong, though he might have no idea, 

what.

3.1.10  Continue with Latent Error

Thimbleby (1998a) observes that computing systems can fail, but not stop working. If the

program produces an output when the proper response would have been to report an error, it

has a bug. But, different to a crash, this is not obvious to the user. Instead, it tricks him into

believing that the operation was successful. He might use the output as input for further steps,

which again might work out. When eventually the error becomes apparent, he has to face data

devastation with a huge cause-effect chasm. Such errors can stay invisible for a long time and

are thus called latent errors.

Often, the final exposure happens because of an accident, where several unusual situations

combine. Reason explains the contribution of latent error to system disasters: "Their part is

usually that of adding the final garnish to a lethal brew whose ingredients have already been

long in the cooking." Reason (1990, 173). Consequently, latent errors are far worse than a 

crash.

3.2  Wording of Error Messages

Errors are usually reported using text information. The literature for human computer

interaction (HCI) has a huge repository of guidelines on how to word error messages, for 

example:

"Good error messages are defensive, precise and constructive" (Molich & Nielsen, 1990). 

"Messages should be appropriate to the user’s level of knowledge" (Brown, 1988). 

Avoid words like illegal, fatal, abort, corrupt, bad, error (Shneiderman, 1997).

From a programmer’s point of view, most of these guidelines are essentially useless, some of

them even ridiculous. What a programmer needs is not a pile of informal guidelines and pages

filled with "Don’t, don’t, don’t". Instead, he needs data structures and algorithms. And what

he really wants are ready implemented routines and libraries.

Despite this, it is to some extent possible to collect the more specific part of HCI literature

and suggest a detailed path to design useful error messages without having to interpret around

too much.
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Sentences should be short and have a simple grammatical structure. This is generally

achieved by:

using present tense 

using active voice 

placing the main topic at the beginning 

telling what to do rather than what to avoid 

describing sequences of instructions in the order of the temporal sequence of events 

not being overly polite

Reconsidering that an error always is detected by a contraction of the form

Contradiction = Computed value does_not_match Expectation

an obvious way to derive an error message from it is to announce that

Computed value must match expectation

Less abstract, this usually means to have error messages of the form

Something must be something else

Something must have something else

The programmer’s job then is to specify something and something else. Brown (1988)

hints that something is the name of the fields or parameter in error, and something else is

one of the following: the action required to correct the error, the correct format for the field,

or a list of valid entries for the field. For instance

Month must be a number between 1 and 12

Size must be one of S, M, L or XL

However, if the message includes elements not related to the user input directly, it is

necessary to put them into a context. This is done by preceeding the above message text with

a description of the form

Cannot do something

Do something indicates the operation the program attempted to carry out. For instance,
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Cannot save image to file "a:hugo.png"

If this still does not have any meaning to the user, more abstract descriptions of form Cannot

do something form can preceed the message. Generally, one error can be described by a

sequence of Cannot do something messages, with a Something must be something else

message at the end suggesting what can be done in order to fix the problem.

Following the above scheme should quickly result into "good" error messages without a lot of

consideration. However, this does not mean that there are no better messages. Thus,

improving, revising and evaluating them in practice is necessary. Gould & Lewis (1985) and

Shneiderman (1997) give some advises on how to proceed.

3.3  Where to Report

The optimal placement of error messages on the display is another undecided matter of HCI.

Basically, there are three possibilities (Shneiderman, 1997):

1.  Near the erroneous item, so it is easy to see what is wrong. Some claim that this clutters the

display. 

2.  At the bottom of the display, at a consistent position. This avoids clutter, but might

permanently waste space. Also, the human eye might have a long way between error

message and cause. 

3.  Pop up a dialog box in the middle of the display. This is popular in practice because it is

trivial to program. Often, the dialog covers the erroneous item, requiring the user to waste

time with reorganizing his windows. Another quirk is that such dialogs are often modal.

This implies that the user can see the information about the error, but not fix it in the

blocked part of the program. When he cancels the dialog and can start fixing, all

information about the error is gone.

3.4  Colors, Highlighting and Audio

Certain colors have meanings associated with them, and thus can be used to emphasize error

related information. Table 1 lists codings relevant for error reporting (Brown, 1988).
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Table 1: Color codings relevant to highlight errors

Color Use

White/Black Base color

Red Errors or alarms; Stop

Yellow Warnings or data that may require attention

Green Normal or OK; Go

Pink (Magenta) Secondary alarm color

However, uncritical addition of color to displays is not uniformly beneficial. Lots of different

colors and highlighting make the screen "noisy" and slow down the extraction of information.

Experience shows that six different colors for text on one screen seems to be an upper limit.

And as many users are color-weak and some systems may have monochromatic displays, the

programmer cannot rely on colors only.

Auditory signals such as bells and beeps can be useful to attract the user’s attention. This is

even true if he does not currently look at the display. However, overuse of auditory signals

can defeat their purpose and may also annoy users. This is particularly true if several users

share the same room. There such signals can also have an embarrassing effect if they are

associated with an error. Therefore a mechanism should exist to turn off non-critical audio

signals or control the volume.

Again, one cannot rely on audio signals only. Not all systems have the required hardware to

play them. And a simple beep can only point out that something went wrong, but cannot

"describe" further details - this is the task of the message text (Shneiderman, 1997).

3.5  An Example

The application of the above is probably best outlined when suggesting how to improve the

error message of an incident that really happened: The user of a paint program selected the

"Print" function from a menu, which caused an error message announcing "Disk full error".

Despite the fact that the message does not meet any requirements of a useful error message, it

is not really clear how the printing process can cause a disk to be full. A closer investigation

eventually revealed that the program does not send the data to the printer directly. Instead, it

renders to a temporary file created on the disk to save memory. This file did not fit on the

disk, and caused the error.
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The first step of the improvement is to obtain the something must be something else 

form:

Volume T: must have more free space.

In this case, the program might even know how much space exactly is needed for the

temporary file, as it depends on the resolution of the picture, which is already known before

the file is written. A further improvement would be:

Volume T: must have at least 3.8 MB free space.

However, the user will still be puzzled by the fact that printing can make a disk run out of

space. The context of the error has to be described more exactly by prepending a Cannot do 

something type message:

Cannot write temporary file:

Volume T: must have at least 3.8 MB free space.

A further refinement could be to make it clear which operation applied on which data failed:

Cannot print image "hugo.eps":

Cannot write temporary file:

Volume T: must have at least 3.8 MB free space.

The first line can be omitted, if the context is clear without it. For example, if the error

message interrupts a printing progress indicator. Using a window title like "Printer problem"

in the dialog for the error message might also be sufficient. Notably, the above lines have to

be displayed at the same time, as they belong together.

One interesting fact is the usage of the rather technical term "temporary file". Inexperienced

users might have no idea what it means. HCI people often demand that technical terms have

no place in error messages. Alas, the dirty implementation details of the temporary file is why

the error occurred. Would the printer buffer be in memory, this error couldn’t happen. But

then, without mentioning the temporary file, it is not clear why the printer runs out of disk 

space.

Clearly, the user cannot understand why a printer runs out of disk space without being told

about the temporary file. Furthermore, he cannot understand the error message without

knowing what a temporary file is.
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A simple solution to this dilemma is to have an online help button accessible from the

dialogue. The help text can explain that a temporary file is a common programming concept

to store big amounts of data created during a complex step on the disk rather than in memory.

They are called temporary because the program automatically removes them once the

operation is finished.
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4  The Program’s View

This chapter characterizes different kinds of defects and error situations. It discusses how to

detect the various types of errors and what details to report to the user. 

4.1  Defect Classification

Laprie & Kanoun (1996) basically distinguishes between physical defects, caused e.g. by

corrosion or material fatigue, and design defects introduced by the creator of the system.

Applying this on programs, the following atomic components can have either hardware- or

design defects:

Programmer

Storage hardware Storage hardwareInterpreter hardware

AdministratorUser Program

OutputInput Program

Figure 4: Atomic components of the program environment

In this simplified view, the program is an abstract entity designed and used by humans, which

has a physical representation in the hardware.

4.1.1  Design Defects

Currently, all design defects are introduced by human beings. As already outlined, roughly

there are three different kinds of people that can cause the program to run into trouble:

1.  The programmer can fail to create an acceptable program. 

2.  The user can fail to provide a reasonable input. 

3.  The administrator can fail to provide a working environment for the program speaking in

terms of hardware and software components.

Unfortunately, people are incredibly creative at generating problems, and incredibly fast.

Furthermore, they prefer to respond with action, instead of pausing to sort things out (Carroll

& Aaronson, 1988). Reason uses the term unsafe acts to describe the human contribution to a

state that eventually results in a problem:
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Unintended

     action

Basic error types

  action

Intended

Forgetting intentions

Memory failures

Slip

Lapse

Mistake

Violation

Rule based mistakes
Misapplication of good rule
Application of bad rule

Many variable forms
Knowledge-based mistakes

Routine violations
Exceptional violation
Acts of sabotage

Intrusion
Omission
Reversal
Misordering
Mistiming

Attentional failures

Omitting planed items
Place losing

Unsafe acts

Figure 5: The psychological varieties of human unsafe acts (Reason, 1990, 207)

This raises some trouble with the terminology: are unsafe acts human defects or errors? From

a program’s point of view, it seems to be appropriate to describe people as potential defect

source, but use the term "error" to talk about how people become "defective". The notion of 

human error instead of human defect has also been used by (Norman, 1983; Pinker, 1997;

Reason, 1990; Schmidt & Bisang, 1998).

Applied on the context of using a program, unsafe acts can be described as:

Slips happen when a person does something wrong, though he didn’t intent to and actually

would know better. For example, the user types "their" when intending to type "there". 

Lapses indicate that the user forgot to do something he wanted to. For example, he wants to

save a text before quitting an editor. But then he has a sudden idea, makes some last

changes and exits without saving. 

Mistakes happen when the intention of an action is wrong. Somebody "intentionally"

carries out a sequence of actions that - maybe even possible and correct for the program -

do not give him what he wants. For example, the user might start a plain text editor with

the intension to write a text with fancy layout and multiple fonts. While he will be able to

write text, he won’t find any functions to change layout and style. 

Violations occur when somebody deliberately does something "wrong". Often this is the

only way to work around a defect. Sometimes it is laziness because there is no reasonable

"right" way. If the intention is to cause damage to the system, we speak of sabotage.

Violations are no real errors. They often hint at defects in the program design or the 

environment.
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The reason for committing unsafe acts can be contributed to basic properties of the human

mind, like limited memory and a desire to simplify and generalize knowledge in patterns.

Pinker gives an exhaustive discussion, though he admits that we still don’t know exactly what

is really going on (Pinker, 1997).

Norman further categorizes slips and lapses into a small set of classes based on the

mechanisms that seem to be the most likely cause, focusing on the user (Norman, 1983). The

most common ones are:

Mode error: when the user believes that the system is in one state though it isn’t. An

example is the text editor vi, which has two modes: a command mode, where the user can

do things like moving the cursor, and an insert mode, where he can enter text. Often users

forget in which mode they are. 

Description error: when insufficient specification of an action is given and the user is not

sure what to do. An example is the meaning of the d key in vi, which is different if pressed

alone (d), with Shift (D) or Control (^D). 

Capture error: When there is an overlap in the sequence required for the performance of

two different actions. For example, vi has a command ":w" to save the current text and then

continue editing. Another command is ":wq", which is used to save and exit. The second

command is very frequent, and often the user finds himself out of the editor back in the

command line because by a capture error he typed ":wq" instead of ":w". 

Activation error: An appropriate action fails to be performed. This is usually caused by the

fact that the user has a very limited memory. As a result, he might forget something he

intended to do just seconds ago.

Norman points out that many user errors can be avoided by a change in the program design or

the documentation. Common literature on human factors already describes these issues. Basic

guidelines are: avoid modes (to prevent mode errors), use different command sequences for

different classes of actions and avoid overlapping sequences (to minimize capture and

description errors), try to make actions reversible ("undo") and keep the whole system

consistent (to avoid activation errors).

However, this is easier said than done. Just try to specify what "consistent" means. Removing

modes is not always possible for complex systems or just increases the frequency of

description errors. And overly cautious or verbose program design can limit the usefulness for

experienced users. It should not come as a surprise that with HCI a whole branch of computer

science discusses these trade-offs.
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Human error is no sole property of users. The role of the programmer is described in more

detail later.

4.1.2  Physical Defects

For the program, physical defects refer to errors that lie within the physical representation of

the program or the data it processes. Essentially, this means the hardware:

A defective storage hardware is unable to read input or write output. For example, a floppy

disk after spending some time in the sun. 

A defective interpreter can stop to interpret the program. For example, a power failure.

Hardware is distinct from software in many ways, which generally makes it more reliable.

First, there is a long history during which many experiences were collected, allowing to

predict physical decay quite accurately and consequently replace a component before it fails

(Laprie & Kanoun, 1996). Second, hardware systems are generally simplier than software,

have small interfaces and don’t change much over the time.

The reasons for that are not that hardware people are generally smarter than software people,

but that hardware errors are immediately expensive speaking in terms of money, resulting in a

bigger pressure to be careful. One can’t just upload an improved CPU to the Internet.

Furthermore, because hardware wears off, users are forced to upgrade anyway, and do not

shun a generation change from time to time (unless they depend on old programs running on

the new hardware). Newer generations often include a redesign.

This avoids that a system degenerates over decades like it is the case with many programs,

whose design doesn’t "wear off" over the time. It just becomes more and more inapplicable,

but it doesn’t physically fall apart.

Physical defects can be avoided by providing multiple identical copies of a component. The

canonical example for this is Triple Modular Redundancy (TMR). To make a component in

Figure 6(a) tolerant to physical defects, it could be replaced by the TMR system in Figure 

6(b):
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(b) Voter OutputInput Component

Component

Component

(a) Input OutputComponent

Figure 6: Triple Modular Redundancy

The system consists of three copies of the component of identical design and a voter which

checks the value of the majority. If thus a single component fails but the remaining two agree

in their output, it is possible to detect the broken component and continue using the output of

the others (Lee & Anderson, 1990). However, eventually all copies will be broken. So

someone has to replace the demolished components by working copies before this can 

happen.

4.2  Error Classification

A program cannot detect defects. All it can do is reflect upon its current state and point out

inconsistencies. To do that, it has to provoke contradictions, which it does by comparing its

state to expectations. These expectations have to be provided by the programmer. Once a

contradiction turns out, the program detected an error. It proceeds by refusing to produce the

output. Instead, it gives a description of the error, and, depending on the error and possible

user requests, decides how to continue.

For every class of errors, the following issues are taken into account:

Further classifications of the situation allowing a more detailed discussion. This thesis

mainly aims at giving the big picture. 

How to perform the actual detection and what type of contradictions can be useful 

What to report about the error, so that the description can be considered precise enough for

the user to figure what went wrong.

4.2.1  Input Error

Generally, programs translate input to output. An input error indicates inadequate input data

which cannot lead to any output.
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4.2.1.1  Classification

Actually, this class of error should be covered by one of the busiest disciplines of computer

science: parsing and compiling. The expected input format is often described by means of a

context-free grammar, where such errors are further categorized as lexical, semantic and

syntactic errors (Sippu, 1981; Dain, 1991). This approach has the problem that it does not

exactly describe what an error is. Various models attempt to fix this, with the most popular

ones being: 

The minimum distance error measures the shortest way to transform a syntactically

incorrect input into a correct one. The transformation can be done by basic edit operations,

typically insert, delete or replace a single symbol. 

The parser defined error in an incorrect string, with respect to the language, marks the

point at which a prefix of the string ceases to be a prefix of the language.

The main trouble with this seems to be the lack of a context. Dain observes: "The human who

reads the source program [=the input] makes use of much more information than is available

to a parser or syntax error handling scheme, including not only tokens from source characters,

but also layout of the program, context-sensitive information such as types, and logical

meaning" (Dain, 1991, 5).

Things become easier when data are structured into hierarchies and sequences of data items,

as for recursive descent parsing (Aho et al., 1985). This allows every hierarchy to be seen as

context on its own, also having an own grammar. Though this sounds very abstract, such

structures are basically everywhere, for example: A sentence is a sequence of words, and

every word is a sequence of letters. Object oriented programs consist of a sequence of classes,

a class is a sequence of routines, routines are sequences of statements etc. Quite recently it

has become fashionable to structure text data, like in XML and its predecessors (Bray et al., 

1998). Morrison (1985) explains a less restricted and resource consuming way also applicable

on general binary data, which can be used to store graphics, music, configuration files etc and

lately influenced the PNG image format (Boutell, 1996).

A sequence of data items basically can contain the following simple errors:

Wrong items are items that are simply not allowed to show up in a certain context. For

example, the letter "ö" is not part of the context "ASCII character". 

Missing required items can only occur in a context that has required items. For example, an

executable C program requires a main function. 

Duplicate items can only occur in a context that does not allow them. For example, a C
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compiler rejects the two variable declarations int x; int x because there can be only one

variable with the name x. 

An incomplete item sequence is also possible without required items within the context, for

example the mathematical expression ((a+b)*c lacks a closing ).

4.2.1.2  Detection

The detection of missing required and duplicate items should be straight forward for most 

programmers.

To detect an incomplete sequence, two approaches are possible:

1.  The first item in the sequence describes the expected amount of items in the sequence. If

the sequence ends earlier, it is apparently incomplete. For example, many programming

languages implement a string datatype that way. 

2.  A special item describes the end of sequence. For example, a mathematical expression

started with "(" must end with ")".

Wrong items are described by the rules in the context, thus every item can be validated

against it. It is however not trivial to define these rules. Common concepts are:

Possible ranges. For example, "ö" is not an ASCII character, but can be part of a sequence

if it is stored in a resource that allows 8 bit values. 

Redundancy. This is commonly done by adding items that contain no new data but only a

checksum computed over all other items within the context 

Order. Certain items are only allowed at a certain position, for example (a+b) is an

expression, but )ab(+ is not though it contains the same items 

Version information. Many operating systems for example have library items with a

version number. If the version is too small, the library is considered "wrong", meaning 

outdated.

Not all these mechanisms are possible or feasible in all cases. The main difference is if input

data items were entered directly by the user (such as text) or formerly stored by a program

that interpreted more abstract commands (such as a paint program). For example, we cannot

expect a programmer to compute an Adler32 checksum (Boutell, 1996) for every line of

source code he enters. On the other hand, such a checksum can easily be computed by a

program that writes a data hunk in an image.
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4.2.1.3  Reporting

To create a descriptive error message, the context needs a name the user understands. The

same goes for every item. For example, the item "a" can be in the context "letter", the item

"duck" in the context "word", or the item "Work:user/hugo.png" in the context "file".

Some of the above errors are detected at a certain position in the sequence. Others can only be

detected at the end of the sequence and should use the start of the sequence as error position.

Duplicate items have two positions: the first where the original showed up, and the second

where the reoccurrence happened. Both have to be given in an error message.

In binary data, the position is often of no use for the user and can be omitted. It does not help

him if he knows that in the PLTE chunk at the file position 768 the checksum should have

been 0x7632 instead of 0x8743.

In text data, there is a line and a column. Internally in the program the position is often stored

as index, that is translated to line and column for reporting. A line number alone is not

enough, although it is unfortunately common in practice.

4.2.2  Component Allocation Error

Programs need hard- and software components to process their data. These can be memory,

disk space or a network connection, but also external libraries or bitmaps. Before a

component can be used, it has to be allocated. If this for some reason is not possible, we

speak about component allocation error.

4.2.2.1  Classification

A component allocation can fail due to the following reasons:

Exhaustion if the capacity of the component is not sufficient for the amount of data to be

stored in it. One main thing to observe is that all components can run out, no matter how

numerous they seem. This can simply be explained by the fact that there is only a limited

number of atoms in the universe. 

Unavailability occurs when there is no component matching the allocation parameters. 

Denial indicates that the system has a component, but does not allow the program to

allocate it. Possible reasons are security restrictions or exclusive locks acquired by others.
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4.2.2.2  Detection

Components are maintained by a component manager, for example by the operating system

or the compiler (Stallings, 1998). This manager is supposed to know about the whereabouts

and properties of his components, and thus can identify most impossible allocations by simply

scanning the list of available components for a fitting one.

In some cases, the manager has to utilize time-checks. Examples are physically broken

connections to hardware devices like printers or networks machine using certain operating

systems and protocols.

4.2.2.3  Reporting

Many components act on a quite low level. Very often it is completely impossible for the

programmer to design a message in terms of the user, avoiding tech-jargon. For instance

The baud rate for serial.device, unit 3, must be at most 9600.

Or maybe the reason was as follows:

The device driver for serial.device, unit 3, must be updated to at least version 3.7. A newer

version can be obtained from the vendor homepage at http://www.hugo.com/.

Probably every first year student of computer science can outline the fields of a device

datatype that would allow such messages. But it seems that the implementers of most

common operating systems and APIs cannot.

In case of time-checks, no useful error message can be generated because no communication

channel exists to exchange error information. This clearly is a design defect in the component 

management.

4.2.3  Component Access Error

Components can deny to work even after their successful allocation. For example, a network

connection can get broken during data transfer because somebody stumbled over a cable.

From a programmer’s point of view, these are probably the errors from which it is most

difficult to recover because the program has already undergone several state changes, but it is

not easy to decide which. Often, a reset of the current routine context is the only feasible thing

to do.
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4.2.3.1  Classification

No further classification is necessary. Either it occurs, or not.

4.2.3.2  Detection

Like allocation errors, access errors are usually detected by the component manager.

Generally, it will use coding checks (like checksums of a disk block) or reverse checks (like a

verify after a write operation).

4.2.3.3  Reporting

Component access errors can be detected quite exactly, and often a huge amount of

information is available about it. However, most of this information like internal disk block

numbers or network ID’s is not helpful for the user, like in:

Disk read error on block #1234.

In most cases, the only thing to report is the name under which the user addressed the

component. For the above example, this would mean a filename:

Cannot read "hugo.data": disk structure must be repaired.

Under most operating systems however all this is not possible because the internal resource

access structures, like file handles, do not store the name under which the file was opened.

The same goes for network connections, where the system soon knows nothing more than an

internal handle ID. This results from the fact that the human readable name used to allocate a

resource is not needed anymore for reading, writing and releasing it later. (Possible routines

to reconvert the handle to a name often do not work reliably during error situations).

4.2.4  Program Bug

Different from all the above mentioned errors, with bugs the error is in the program code and

can only be fixed by the programmer. All a user can do is "work around" it, avoiding to

execute those parts of the program that cause the problem.

4.2.4.1  Classification

There are already several attempts to classify bugs in literature (Beizer, 1990; Chillarege, 

1996; Eisenstadt, 1997; Knuth, 1989). Unfortunately none of them turned out to be useful for

exact reproduction in this paper. Either the existing classifications were too detailed, or
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certain important categories were omitted. The following rough classification nevertheless is

based on the above references, with emphasis on the source of a bug.

Programmer mistake: Requirements and the specifications developed from them can be

incomplete, ambiguous, or self-contradictory. Examples are usage of inapplicable

algorithms and data structures, overlooking of special cases - especially error handling, or

wrong understanding of the system the program runs on like CPU byte order, linefeed

character or integer range. Common reasons are that the programmer did not understand

the system, certain algorithms or the requirements of the user. The latter is often a result of

the fact that the user did not know himself what he wanted or couldn’t explain it properly to

the programmer. Sometimes it is due to conflicting goals of different users because of

political reasons (Strong & Miller, 1995). 

Programmer slip: All of the above mentioned slips can happen to programmers when

entering the program code if tools and languages have a flawed design. Common examples

taken from the C language are: 

Mode error: The expression (x + (y << 16)) is written as (x + y << 16). This can happen

because the shift left operator (<<) has a lower priority (=unexpected mode) than the

addition (+). 

Description error: The function call strstr(haystack,needle), used to search for a

substring needle in a source string haystack, is called as strstr(needle,haystack). As

both parameters are of the same type, no compiler error is produced. 

Capture error: The conditional if (x == 3) is written as if (x = 3), acting as a fully legal

assignment. 

Activation error: After a case, the break is forgotten.

Many slips are typos and can be caught by the compiler if it requires things like variables

and routines to be declared. Nevertheless many dialects of Basic and several scripting

languages do not enforce this. This makes it faster to type the program code, but often

induces bugs that can only be detected during runtime.

Component clobbering refers to memory clobbering, releasing resources and still access

them later on or "forgetting" to release a resource after it is not needed anymore.

(Programmers are often fully aware of the fact that their program contains resource leaks.

But finding and fixing them is near to impossible with current tools.) It can also happen to

components mostly maintained by the compiler like variables and the stack. One might

write into an array outside its defined boundaries or use an uninitialized variable. 

Reuse error: The actual bug was within the compiler, the operating system or an

off-the-shelf component provided by somebody outside the own team. According to
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Eisenstadt (1997), this is the second most frequent root cause of "difficult" bugs. 

Another version of this kind is when code "known to work" is reused in a new program

under circumstances it was not designed for. Jézéquel & Meyer (1997) describe a famous 

example.

But most common, reuse bugs are introduced after performing a change to the code in

order to fix a bug or add a feature. It can be said that the new version of the program

"reuses" most parts of the old version. The change can have unexpected influences, causing

new bugs in other places.

Documentation errors are the most common kind of bugs - and often considered the least

harmful. Although many of them are simple spelling mistakes, several are misleading and

lead to incorrect maintenance, therefore causing the insertion of other bugs, especially

reuse errors (Beizer, 1990).

4.2.4.2  Detection

The general mean for detecting bugs during runtime is called assertion. This is a boolean

expressions defining the correct state of the program at a particular location in the code. If the

expression does not resolve to true, the program detected a bug. Technical details are

discussed later.

There are several ways to detect bugs without executing the program. One is to scan the

source code for them, preferably by a different person because this increases the chance of

detection (Reason, 1990, 165). In an organized way, this is called software inspection (Gilb et

al., 1993). Many documentation bugs can be exposed using common spell checkers

(surprise!). Furthermore, one can test the program by providing an input and comparing the

actual output with the expected (Beizer, 1990). But Chillarege (1996) laments that such

practices are largely human-intensive processes, which are qualitative, suffer poor

repeatability, and have difficult introduction barriers. They are regularly subject to violations

and carried out with less care if the deadline is approaching. Additionally, such tasks can only

be performed before the program is shipped to the user, not giving any protection afterwards.

4.2.4.3  Reporting

When the program encounters a bug while running on the programmer’s machine for

development and testing purpose, it should attempt to provide exact information about its

state when the bug was detected. Traditional ways to do that are showing a stack trace or

automatically activating a special debugging environment. Still, Lieberman observes in his
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elaborations on the "debugging scandal": "[Today’s] debugging tools are little better than the

tools that came with the programming environments 30 years ago. It is a sad commentary on

state of the art that many programmers identify ’inserting print statements’ as their debugging

technique of choice." (Lieberman, 1997)

A completely different case is when the program detects the bug while executed on the user’s

machine. The user does not know anything about the meaning of internal procedure names

and hexadecimal representations of pointer values. Providing the same information as before

on the screen probably causes panic symptoms. Instead, the program should attempt to write

these internal data to a file and urge the user to submit it as "automatic bug report" to the

programmer. Figure 7 shows an example wording for such a message.

Figure 7: Example wording for reporting a bug to the user

The application Hugo-Tool encountered a condition not anticipated by its programmer.

Because the accuracy of your data can not be ensured anymore, the program is halted. This

means that all data of your current session with it are lost.

A document that contains a detailed technical description of the problem has been stored in

"Work:Hugo-Tool.bug". You are not supposed to understand the contents of this document,

but it will help the programmer to fix the problem in the next release of Hugo-Tool.

Please submit the file "Work:Hugo-Tool.bug" to bugs@hugo.com.

But it is necessary to emphasize that bug detection is not a task that should be carried out by

the user. Joyner (1996) criticizes current development practice: "The real inconsistencies are

often removed by hacking until the program works, with a resultant dependency on testing to

find the errors in the first place. Sometimes companies depend on the customers to actually do

the testing and provide feedback about the problems. While [bug] reporting is an essential

path of communication from the customer, it must be regarded as the last and most costly line

of defence."

The advantage of the above behavior is that it represents a forcing function that does not leave

the user many other choices than reporting the bug. Consequently, the programmer might fix

it, or at least face a user that demands an explanation why not. For most applications this is

preferable to automatic corrections.

However, sometimes this is not acceptable for the user: in systems where a software halt

would cause loss of life or financial ruin, as with software in aero planes or medical

equipment. Lee & Anderson (1990) discuss ways for damage assessment, so that the program
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can reset itself to a state where there is a good change to prevent a disaster. However, these

"software fault tolerance", as it is commonly called, is not without danger. In any case, an

automatic bug report should be stored in a log for the administrator. In such critical systems,

he can be expected to actually read such logs. The programmer can then be informed about

the bug once the plane managed to land with one engine less on the nearest airport (or the 

like).

But such sophisticated mechanisms require a careful design, and administrators that actually

care about their job. This is definitely not the case with most personal computer systems,

simply because it would exceed all costs and be generally unrealistic. Here, halting the

program is definitely more appropriate, as otherwise latent errors would be the most likely 

result.
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5  The Role of the Language

This chapter analyzes various error handling mechanisms provided by widely used

programming languages. It describes all these mechanisms, their underlying ideas and some

implementation details. The analysis is done by validating every mechanism for a set of

criteria and implementing some simple example routines. 

5.1  Analysis Method

The following error handling mechanisms are analyzed: 

Return codes that report about success and error in C 

Status indicators that hold error information in C 

Traps that can be handled in Basic 

Exceptions that are thrown and caught in Java 

Assertions that can fail in C and Eiffel

The analysis is done by first giving a short outline about the scope of the various languages

and their culture and history. It proceeds by explaining the usage in theory and attempts to

implement a couple of small programs showing how to perform common example tasks with

it. After that, implementation details and their implication on performance are investigated. A 

detailed discussion of the issues identified follows in the next chapter.

5.2  Criteria to Evaluate

The analysis evaluates the usefulness of the mechanisms in terms of control flow, error

reporting and dealing with bugs. For that, it will examine the following set of criteria:

Is ignoring errors reported by sub-routines impossible? Of course, a programmer can always

decide not to do anything about an error, but nevertheless, a programming language should

not allow him to do so without some effort.

Can parameters be passed to error handlers? Errors are not only simple numbers, but often

need other values to describe their nature. This is also crucial for useful error reports.

Can the mechanisms be used by the programmer for own errors? If only the language and the

standard library can use a mechanism, things become far more complicated for the

programmer: he has to write his own error handling mechanism, and error handling code

requires an unnecessary distinction between programmer and language errors.
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Does the standard library itself use the mechanisms consistently? Naturally, it is not desirable

that badly designed libraries use other, generally more primitive, mechanisms when dealing

with errors.

Can errors be handled in sequential and hierarchical groups? This is useful for writing error

handlers that want to deal with more than one error, but not yet with all of them. Sequences

allow to assign several distinct errors to a handler (like "read error" and "write error").

Hierarchies are useful if there is an abstract relationship between them (like "all I/O errors").

Is there no or only a very small performance overhead for the code if there is no error? If such

an overhead is noticeable, programmers might be tempted to reduce the number of error

handlers if they slow down the program. The overhead when an error occurs is not considered

here because it has no influence on the normal control flow.

Can error handling code be separated from productive code? This avoids that the normal code

is obfuscated by error handling code, which would make it a lot more difficult to understand

and change for the programmer.

Are retry and resume supported? As discussed, these are two distinct ways to return from an

error handler to the normal control flow.

Are errors delegated automatically to possible outer handlers, if no proper handler exists

within the current routine? Error handlers should only deal with the errors they know how to

cope with. Using handlers that can handle all errors compromises the component structure

and leads to complexity.

Can the error message be generated automatically from an error reported from a routine?

Ideally, only one line of code should be needed to turn an internal error event into a

descriptive message that can be presented to the user. Everything else is torturing the 

programmer.

Does the above error message support Internationalization? In recent years it has become

popular to deliver programs which support more than one language with dialogues and labels.

Does this also work for error messages?

Is the error message quality considered in the standard documentation of the programming

language, and do the examples use a wording basically conforming to the guidelines

discussed before? This is important, because programmers tend to ape the style and wording

of this documentation in their own code.
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The rules change a bit when detecting bugs, especially concerning error reporting:

Is the exact position in the source code available, where the bug was detected? This is not

particularly powerful, but a minimum requirement to allow the programmer tracing it back.

Is a detailed stack trace available? This includes a lot more information, in particular values

of parameters for nested routine calls, which usually allow to reproduce the bug quite easily,

even if it happened on the user’s machine. Preferably, the trace should be accessible as e.g.

string so that it can be used for automatic bug reports. As discussed, displaying the trace to

the user is not helpful.

Can the detection of bugs be (partially) disabled to satisfy performance and space constraints?

5.3  The Languages

5.3.1  C

The C language was originally designed around 1972 at Bell Laboratories as a general

purpose language, and its datatypes and operators have a close relation to the underlying

hardware of most computers. This still makes the language popular for system programming

if low overhead is important.

The first language reference was written by Brian Kernighan and Dennis Ritchie in 1978,

usually referred as "K&R-C". Although the language and its standard library were considered

to be portable, this was not really true. Consequently, in 1989 the American National

Standards Institute (ANSI) introduced ANSI C. This did not extend the original K&R-C

significantly, but mostly defined existing practice as standard and removed or changed some

things that were known to cause trouble. Nowadays, ANSI C is supported by virtually all C

compilers that are still in maintenance (Harbison & Steele, 1991). Therefore from now on

when referring to C, it means ANSI C.

The language itself is very small and does not provide any language specific features for error

handling, thus making it interesting to examine from a minimalists point of view. Error

handling according to C can be done in nearly every programming language, including

machine languages.

Joyner (1996) discusses many deficiencies of the C language and its successor, C++. Ritchie 

(1993) explains some of the obscure design considerations behind C, in particular concerning

the syntax.
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5.3.2  Basic

Basic was originally designed for an experimental timesharing system in the early 1960’s.

The name was chosen simply because it was a simple and basic programming language.

People later on made up various "backronyms", with "beginner’s all-purpose symbolic

instruction code" being the one that is still in use today. During the 1980’s, Basic was widely

used on several low-end microcomputers because it is comparably simple to use and does not

require many resources. These early dialects are often offended because of the bad

programming habits they teach due to the total lack of control structures except if .. then 

goto. Later dialects have acquired most control structures from Pascal and similar languages

and are popular among application programmers who are not keen on programming on the

system level (Raymond et al., 1999).

Still, the dialect evaluated here is a quite early one. It is used on a Sharp Pocket Computer

E500 developed in 1989. This system is equipped with 32KB RAM where both the running

program and a RAM-disk reside. Data in the RAM-disk are preserved even if the computer is

turned off. A common setup is to use about 10K as program memory and the rest for the

RAM-disk. (Sharp Corporation, 1989)

At a first glance it might seem a bit odd to evaluate such a constrained system. But despite the

progresses in computer hardware, even today not all programs run on machines with several

megabytes of memory and CPUs clocked close to the GHz range. Apart from that, variations

of the mechanism described here can still be found in several scripting and batch languages

that are widely used to control bigger applications "from outside" or add macro capabilities to

otherwise cumbersome to use systems.

To avoid being unfair to contemporary Basics, the capabilities of the modern VisualBasic

dialect (Microsoft, 1996) are occasionally outlined in the shadow of severe disturbances of

the E500. The main reason for not discussing this particular dialect in the first place was that

it is a strange mixture of traps, exceptions and assertions, that has not been designed from the

scratch but has incorporated many features over the time. Despite the usefulness in practice,

scientific reasoning would have been difficult due to the resulting complexity and various 

interferences.

5.3.3  Java

Java was originally called Oak, and designed for use in embedded consumer-electronic

applications by James Gosling. After several years of experience with the language, and

significant contributions by several other people it was retargeted to the Internet (whatever

that means) and renamed Java. It is a general-purpose concurrent class-based object-oriented
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programming language, specifically designed to have as few implementation dependencies as

possible. Java claims to allow application developers to write a program once and then be

able to run it everywhere on the Internet (Gosling et al., 1996).

A critical discussion on certain Java features is available from (Thimbleby, 1998b).

5.3.4  Eiffel

Eiffel is an advanced object-oriented programming language that emphasizes the design and

construction of high-quality and reusable software. It was created by Bertrand Meyer and

evolved since its first introduction in 1986. The definition of the Eiffel language is in the

public domain. It is controlled by the Non-profit International Consortium for Eiffel (NICE),

which uses (Meyer, 1992) as the initial definition. Meyer (1997) describes a more up-to-date

version in a less formal way. A set of standard classes is described in (Bezault et al., 1995).

However, this standard is not supported by any of the compilers available today, partially

because it is widely considered incomplete and outdated.

Meyer (1997) also includes critical discussions of most language features, in particular

concerning the assertion mechanism. Kogtenkov (1998) maintains a collection of sample

source codes that expose undefined and inconsistent cases in Eiffel. Liskov & Wing (1994)

point out limitations of assertions in Eiffel and some other languages, while proposing 

solutions.

5.3.5  Other Languages

In my opinion, the above choice of programming languages gives a good mixture of different

approaches to error handling. They also represent quite distinct cultures of programming. All

of them have a certain practical relevance, and have actually been used by many people to

create programs. Additionally, I could access them without further expenses, usually because

Freeware compilers are available.

Although the main focus will be on those language, it doesn’t mean I didn’t consider other

choices. Some possible popular alternatives and reasons not to include them are:

Ada 95 (Taft & Duff, 1997) is complicated enough that Ichbiah, the creator of the earlier

version, resigned publicly from the reviewing group after trying in vain for years to keep

extensions simple. Many remarkable features like dealing with concurrent errors are of no

relevance for my analysis. 

Two of C++’s (Stroustrup, 1997) error handling mechanisms are identical to C, and the

exceptions handling is more considered and cleaner in Java. Although there is an ANSI
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standard, it is very recent. It is difficult to find a compiler that really supports it. Apart from

that, with C++ even more cultural redundancy would have been added to C and Java. 

Oberon (Wirth, 1988) never got an affirmative standard for its libraries. This would have

made it difficult to reason about the examples. Attempts like Oakwood were incomplete

and not implemented. Error handling in Oberon doesn’t offer really significant

improvements to C (which has a very explicit standard). Though the same can be said

about Eiffel and its ELKS, it at least has a much more powerful assertion mechanism.

Generally, they all represent so called hybrid languages, which support both a structured and

object-oriented style of programming. This might make them useful as transition technologies

for programmers getting used to a new style. But it also makes them bigger and more

complex, and consequently more difficult to analyze.

Nevertheless, some of the above languages contain interesting ideas that will occasionally be

mentioned during the analysis and discussion.

5.4  Usage

5.4.1  Special Results in C

Usually, functions return values that describe the output. If there is no output because of an

error, it is possible to indicate this with special values in the result. To deal with the errors, the

programmer has to use conditionals (if...else...) that check for a result indicating an error. For

example, an attempt to open a file in C can look like:

file = fopen(filename, mode);

if (file != NULL) {

   ... /* continue */

} else {

   ... /* handle error */

}

The function fopen() returns NULL if the file couldn’t be opened. All other results can be

interpreted as an internal handle to a successfully opened file.

There are several obvious problems with this approach:

A special value might not exist (Stroustrup, 1997). An example for that is the soon to be

discussed strtol(), where every returned long can indicate a proper result. 

A special value might be an incomplete way to describe the error or pass parameters to it.

For instance, the NULL returned by fopen() does not contain any clues why it didn’t work. 

It is almost impossible to preserve error information over multiple levels of calls as the
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error has to be "converted" to the result type of the current function every time. 

Even plain procedures without an actual result have to be turned into functions. This makes

it more difficult for the programmer to find out what a routine actually does when browsing

the documentation. 

Every error has to be re-detected by the programmer over and over again, upon every

routine call. This can blow up the source code to a magnitude (Stroustrup, 1997).

Additional problems of the C library and language are:

Many results are completely useless. For instance, the routine printf() to format and print

text returns the number of characters it printed. As the formating can be very complex, the

programmer does not generally know how many characters should be printed before calling

the routine, and can’t compare the result to it. 

Function results don’t have to be assigned to a variable (like in Pascal), but can be ignored.

This makes it even easier to forget to handle errors.

5.4.2  Status Indicators in C

A separate variable or function can be used to indicate the status of a routine concerning

possible errors. Meyer (1997) discusses two possible schemes for that:

5.4.2.1  A Priori

A routine that might cause an error has an accompanying function that tells if the routine will

work with a given input. For example, one can attempt to invert a non-singular matrix like 

this:

if (!is_singular(matrix)) {

   invert(matrix)

   ... /* continue */

} else {

   ... /* handle error */

}

Possible errors are first checked by a boolean function is_singular() that returns TRUE if the

matrix cannot be inverted. The call to invert() is only allowed after all requirements have

been ensured.
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5.4.2.2  A Posteriori

Another way is to try the operation first and then check how things worked out. In C, this

requires to either declare a global variable or make it part of the result data structure. Here,

the field matrix->inverted is used:

invert(matrix);

if (matrix->inverted) {

   ... /* continue */

} else {

   ... /* handle error */

}

5.4.2.3  The Actual C Implementation

The C library uses the a posteriori scheme based on the global integer variable errno declared

in <errno.h>. It is initialized to 0, which represents "no error". Most functions set this

variable to other values if detecting errors. However, library functions must not set errno to 0

by themselves. Thus a typical usage involves the following steps:

Set errno = 0 

Call a library function 

Check errno to be 0. If not, handle error

The function strerror() declared in <string.h> allows to convert the numeric value of errno

to a human-readable text. In more detail, it just returns the proper entry from an array of string

constants holding the corresponding message. The language used in these constants can be

changed using routines in <locale.h>.

Possible values for errno are not standardized and depend on the library implementor.

Exceptions are the constants EDOM and ERANGE, which indicate "domain errors" (e.g.

when attempting a log(-1)) and range errors in mathematical functions. Furthermore all error

codes have values greater than 0.

Stroustrup (1997) points out that the use of a global variable is generally clumsy and doesn’t

work well in presence of concurrency. The latter problem however can be addressed by

making the status indicator part of a data structure, like in matrix->inverted - at least as long

as matrix is used by only one process at a time. 
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5.4.2.4  Comparison

The a priori scheme has several obvious problems addressed by a posteriori:

Efficiency considerations might make it impractical to use. In the above example, both 

is_singular() and invert() would probably use the same rather expensive algorithm

(Gaussian elimination) to compute its result. 

External events might render the result of the first function useless before the second

function is called. With is_singular(matrix) this was not a problem. But as a counter

example, consider opening a file in a multitasking system. An openable()/open() pair

would be rather useless here. 

It introduces redundancy in expression. The programmer has to type in and learn how to

use two routines to achieve one task.

Meyer (1997) reflects on status indicators in object-oriented languages. Obviously, they

should be part of the class that provides the routine possibly causing an error. This solves the

problems arising from using a global variable like in C. However, new trouble is introduced: 

It is impossible to describe errors that prevent the creation of a new object (commonly

called creation routines or constructors). 

It causes a memory overhead as every object of the class carries most of the time useless

error handling queries with it. 

The status indicators are part of the "normal" class interface, thus polluting it with features

often irrelevant for the output. 

They often have various names like impossible, failed or connected, making it more

difficult for the programmer to find out what constitutes an error.

And finally, same as special results, status indicators still rely on the programmer to manually

check if things worked out.

5.4.3  Traps in Basic

The basic idea behind trapping is that once a routine detected an error, the control flow

automatically changes to an error handler. Consequently, the handler can be separated from

the normal control flow, unlike conditionals as used above. Goodenough (1975) gives an

in-depth discussion of the general principle.
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5.4.3.1  Traps in E500 Basic

In the E500 Basic dialect, the programmer can activate an error handler routine at the label 

*handler by using the statement on error goto *handler. As the statement suggests, the

interpreter automatically performs a goto *handler if a routine detects an error.

The variable ern ("error number") contains a numeric code for the error that occurred. These

codes are documented in the manual, for example 76 indicates that a file is write protected.

The variable erl contains the line number from where control was passed to the error handler.

Apart from terminating the program, there are three things an error handler can do after

attempting to fix the problem:

resume returns to the statement that caused the error and re-executes it. 

resume next returns to the statements after the one that caused the error and continues

executing the program. 

resume *label continues the program at the specified label.

In all three cases, the error handler remains active. Thus if the same error or a different one

occurs after the resume, the same error handler is called again. This can easily result into

endless loops. To avoid this, the error handler can be deactivated using the statement on error

goto 0.

If the programmer installs an error handler while there is already one active, all information

about the previous handler is discarded. In particular it is impossible to temporarily install an

error handler and reactivate the former one by deactivating the new one using on error goto 

0. Thus nesting of error handlers is not supported.

If an error occurs with no error handler provided by the programmer, the default error handler

terminates the program and displays a message containing a description of the error and the

line number where it occurred. One remarkable fact is that the programmer does not have any

possibility to utilize the message text obviously depending on the value of ern - there is no 

erm$ ("error message string") or the like.

Basically, all functions of the standard library use this mechanism and reliably activate the

error handler in case of trouble. However, many functions tend to ignore dangerous

conditions that might be considered errors. For an example, see the val function below.

Unfortunately, the programmer cannot use the mechanism for own errors.
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5.4.3.2  Some Idiosyncracies

The E500 Basic dialect does not support routine parameters and local variables. Routines can

be called using the gosub statement, return jumps back to the caller. Parameters and results

can only be exchanged by means of global variables.

Many early Basic dialects required the programmer to mark every line of code with a line

number. This was mostly done because resource limitations made more reasonable editors

impossible. The E500 supports this style for backward compatibility with earlier pocket

computers of the same series. Alternatively the programmer can also use labels, resulting in a

better readable program. Labels have to be placed at the beginning of a line and must start

with an asterisk (*). After that, the name of the label follows. For example, "*quit" declares a

label that can be reached using goto *quit.

To make the examples more legible, some minor modifications have been applied before

inserting them in this text. The numeric line numbers have been removed, normal code is

indented to separate it from labels and the whole code is rendered in lower case instead of the

original upper case.

5.4.3.3  Notes on VisualBasic

The modern VisualBasic dialect has addressed many of the problems pointed out above. It

supports nested routines with local variables and error handlers, essentially allowing a similar

control flow as soon to be explained with Java. Furthermore, the programmer can use the

mechanism for own errors preparing a global Err "object" with an integer number to identify

the error. There are optional fields for a descriptive error message and even a link to the help

system. Once the Err is filled, it can be raised. This automatically causes the current position

in the source code to be stored in Err, although only one level of the call stack. As Err is a

global variable, nested errors cause all information about the initial error to be lost.

There is also a resume. Unfortunately, it also fails to work consistently: it always returns

control to the statement in the current routine where the error was raised. If the raise

happened on a lower level in the call stack, it actually performs a retry, restarting the

complete lower level routine. Thus it is very difficult for the programmer to predict what is

actually going to happen when issuing a resume.

Error handling can be disabled completely using on error resume next. This simply

terminates a routine after an error is raised and continues with the next statement at the above

level. This is rather violent, and it is almost impossible for the program to find out in which

state it is as there is no alternative way to check for errors. The examples given in the
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documentation don’t seem to justify such an approach.

Remarkably, the documentation contains several examples with relatively useful error

messages (at least when considering the others evaluated here). There are even a few

paragraphs giving general guidelines on good wording. The only other documentation with

similar qualities I’m aware of is the Ada 95 reference manual (Taft & Duff, 1997).

However, the mechanism has apparently been extended and patched for a long time without

getting rid of several redundancies and inconsistencies. This made it unsuitable for a detailed 

evaluation.

5.4.4  Exceptions in Java

In Java, errors are reported to the calling routine via exceptions. In terms of control flow, this

is comparable to trapping discussed above. Different to before, information about the error is

not stored in global variables, but in exception objects.

5.4.4.1  Statements and Clauses

Exceptions are said to be thrown from the point where it occurred and are said to be caught at

the point to which control is transferred. Error handlers are established by catch clauses of try

statements, followed by an optional finally clause executing cleanup actions:

try {

   // Do something

} catch (Exception exception) {

   // Handle possible errors

} finally {

   // Cleanup actions

}

A try statement executes a block. If an exception is thrown and the try statement has one or

more catch clauses that can catch it, control will be transferred to the first such catch clause.

If the try statement has a finally clause, another block of code is executed, no matter whether

an exception occurred or not.

The catch clause is comparable with the switch clause and essentially represents a multilevel 

if...else if.
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5.4.4.2  The Throwable Class

Every exception is represented by an instance of the class Throwable or one of its subclasses.

Such an object can be used to carry information from the point at which an exception occurs

to the handler that catches it. Three basic subclasses of Throwable are used to implement the

other, more specific exceptions. Figure 8 shows their relation in a BON diagram.

RuntimeException

Throwable

Exception

Object

Error

Figure 8: Java exception classes

Members of Error are usually thrown for serious problems, for instance 

VirtualMachineError, ClassFormatError and StackOverflowError. Members of 

RuntimeException indicate runtime errors of the program. Examples for such exceptions are 

NullPointerException, IndexOutOfBoundException and ArithmeticException. Often,

they indicate bugs. Members of Exception, but not RuntimeException, are used to indicate

abnormal conditions the programmer should decide how to handle while writing the program.

Examples are FileNotFoundException, ParseException and SQLException. Usually, they

indicate that something went wrong in the outside world.

5.4.4.3  Checked and Unchecked Exceptions

The compiler distinguishes between checked and unchecked exceptions. All members of 

Error and RuntimeException are unchecked, whereas all other members of Exception are

checked. 

When a routine calls another routine that might throw a checked exception, the compiler

ensures that the developer either provides a catch clause for that particular exception (or one

of its parent classes) or declares it in a throws clause within the routine header, for example:

void readSettings(String filename) throws IOException

{

   // Do something that might cause an IOException, but do not catch it.

}
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5.4.4.4  Uncaught Exceptions

If a routine does not provide a catch clause for a particular exception, the exception is

propagated to the first routine on the call stack that can handle it.

If no routine knows how to deal with it, all remaining finally clauses are executed and 

ThreadGroup.UncaughtException() is invoked. If a program does not implement this

routine, a default handler depending on the Java environment is used. Most environments

terminate the thread that caused the exception and print out its stack trace. If it was the main

thread, the whole program quits.

5.4.4.5  Declaring and Using Own Errors

As already stated, exceptions are normal objects. Because of that, a developer can declare his

own errors based on the class Throwable. Usually either the class Exception or 

RuntimeException act as base class:

class MyOwnException extends Exception {

}

An error can be detected and reported to the caller using the throw statement:

if (contradiction) {

   throw new MyOwnException(optional message);

}

Naturally, an exception class can have attributes and methods just like any other class. This

allows to pass parameters by means of additional attributes extending the exception class.

Preferably they are set by invoking the constructor, which should take them in its parameter 

list.

There is some confusion whether to use a checked or unchecked base class for own errors.

This is discussed later.

5.4.4.6  Reporting Exceptions

The class Throwable has three functions to present its information in a human readable form:

1.  toString() returns a short description of the object with most data only interesting for the

programmer. 

2.  getMessage() returns the detailed message passed to the constructor when throwing it. In

case of exceptions, this should be of a form that can be presented to the user without further

considerations. 
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3.  getLocalizedMessage() can be overloaded to return the message in the language

preferred by the user. By default, it has the same result as getMessage().

A stack trace is available via printStackTrace(). This of course is again only of interest for

the programmer.

5.4.4.7  Exceptions under Special Circumstances

There are several cases in the Java language where it is not initially obvious what will happen

if an exception occurs:

If an exception is thrown inside a finally clause, it is terminated. The original catches are not

evaluated again, but the exception is propagated to the encompassing try. All data about a

possible initial exception thrown before the finally are discarded, thus all information about

the original error is lost.

When a finalizer is called by the garbage collector, the programmer can not enclose its call in

a try. If an exception is thrown at this point, it is ignored and the finalizer is terminated. Still

the object is marked as finalized and will not be collected at a later point. This creates

possible latent errors and resource leaks.

Exceptions thrown in a secondary thread can not easily be handled by the main thread.

Instead, UncaughtException() of the secondary thread is invoked without the main thread

getting notified. In many cases this is not what the programmer wants. DeRusso & Haggar 

(1998) suggest a workaround for this problem, where the main thread uses a listener class to

be informed about exceptions in the secondary thread. But this compromises the original

exception handling mechanism, forcing the programmer to think differently.

5.4.5  Assertions in Eiffel

Assertions are boolean expressions defining the correct state of the program. Simple examples

are that an integer value must be greater than 0 or a pointer must not be Void (or NULL using 

C-terminology).

5.4.5.1  Assertions vs. Formal Methods

Assertions are based on work done by Floyd, Hoare and Dijkstra, which was also influential

for several formal specification languages such as Z and VDM; Meyer (1997) gives detailed

bibliographical notes. The underlying idea is that computer programs are mathematical

expressions and their correctness can be proven by means of mathematical methods. Dromey 

(1989) discusses this from a formal and mathematical perspective.
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However, things didn’t work out as intended. Hoare gives the following reasons, why it is not

easy to derive programs from specifications and proof their correctness: computers of the

present day are poorly defined, mathematics has no tradition with dealing of such large scale

expressions, programming languages are overly complicated and most programmers do not

know how to handle the required mathematics properly (Hoare, 1986).

5.4.5.2  Types of Assertions

Eiffel addressed most of these problems in its Design by Contract. The idea is not any more to

proof that a program is correct but to try very hard to expose it as incorrect. Though these are

formally different things, the latter one can be done easier and suggests to be an improvement

to "wishful thinking". There are several types of assertions, with the most important ones 

being:

Preconditions must hold when calling a routine and are evaluate at the entry point. For

example, a function to compute the square root of a given value x as non-complex floating

point number only works for x >= 0. 

Postconditions check the outcome at the end of a method. For example, a function

calculating the norm of a vector may check that the result is >= 0. 

Class invariants ensure the consistency of every object of a certain class. They are checked

at the beginning and end of every routine invocation . For example, a class LIST may

check that the element count >= 0.

These types are particular useful because they are part of the interface and thus also act as

documentation. Further assertions dealing only with implementation specific details are loop 

variants and loop invariants to detect endless loops, simple checks for whatever conditions,

validation for non-Void pointers when accessing attributes or calling routines and a few 

others.

Assertions replace cryptic mathematical notations by a quite readable English-like

programming language. The proofing is not done by toying around on paper as with many

formal methods, but by actually executing the assertion expressions in the computer during

runtime. A nice side-effect of assertions is that they cannot only expose bugs in the own

program, but within the compiler, standard library, operating system and sometimes even

hardware components. Different to other languages, such events are quite apparent as soon as

the programmer starts to examine the stack trace after a failed assertion, even if one of the

own routines detected the error.
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Another view of assertions is that they describe the what as executable code, not only the how

as in more traditional programming languages. For the latter, the what often is only available

as paper documents hardly anybody reads and maintains.

5.4.5.3  Assertions and Inheritance

Basically, in a descendant class, all ancestors’ assertions still apply. However, some

considerations are necessary when the new class wants to redeclare assertions and dynamic

binding is involved:

For class invariants, the old invariant is still validated, but the descendant can have an own

invariant with additional conditions.

For pre- and postconditions of routines, a new routine can

Replace the precondition by a weaker one. This means accepting more inputs, which can

cause no harm to a caller that satisfies the original precondition. 

Replace the postcondition by a stronger one. This means producing more than what was

promised, which can cause no harm to a caller relying on the original postcondition being

satisfied after the call.

Eiffel takes care of this by logically "or-ing" the old and the new precondition, and by

logically "and-ing" the old and the new postcondition. To make this apparent for the

programmer, it requires a slightly different notation (require else and ensure then instead

of just require and ensure). 

5.4.5.4  Developer Exceptions

Clearly, assertions are there to detect bugs in the program. For all other errors resulting from

communication with the outside world, the standard libraries generally use status indicators.

Additionally, Eiffel provides developer exceptions. Unfortunately, they are not remotely well

thought out as the assertion mechanism. Facilities to raise developer exceptions and obtain

error messages are different in (Meyer, 1992), (Bezault et al., 1995) and (Meyer, 1997).

Actual implementations again differ in their possibilities.

Generally,the class EXCEPTIONS provides facilities to deal with exceptions and assertions.

The trouble already starts when client programmers want to use this class. Some simply

inherit from it, e.g. 
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class SOME_CLIENT

inherit EXCEPTIONS

...

Others prefer to declare a private expanded attribute for it to avoid polluting name space of

the client class, e.g. 

class SOME_CLIENT

feature {NONE}

   exceptions: expanded EXCEPTIONS

...

Again others declare this feature as a once routine which allows that several clients of 

EXCEPTIONS share the same attribute, e.g. 

class SHARED_EXCEPTIONS

   Exceptions: EXCEPTIONS is

      once

         !! Result

      end

end -- class SHARED_EXCEPTIONS

class SOME_CLIENT

inherit SHARED_EXCEPTIONS

...

end -- class SOME_CLIENT

Most implementations allow to raise an exception using raise(name: STRING). The

meaning of name is not further specified, and its contents are more or less arbitrary. In

(Meyer, 1997), this routine does not exist anymore, and the whole EXCEPTIONS class looks

different (Actually, almost identical to Ada 95 exceptions).

As neither the version described in (Meyer, 1992) nor (Meyer, 1997) contributes any

remarkable new insights in handling of non-bug errors, I decided to not discuss the "convert a

number" and "copy a file" example in Eiffel in depth. This decision was supported by the fact

that the standard library does not use the exceptions mechanism to report I/O errors and

impossible string to integer conversion, rather than class specific status indicators (similar to

C’s errno).

5.4.5.5  Recovering from Assertions

To handle assertions (and exceptions in general), a routine can provide a rescue clause. The

purpose is to restore a consistent state that satisfies the class invariant. Additionally, the

rescue clause can attempt to correct the error and issue a retry, which must also ensure the

61



precondition. If this is possible, the routine is considered to have failed, causing a 

Routine_failure exception (Meyer, 1997, 429).

The do...rescue idiom is basically the same as try...catch in Java. One major difference is

the granularity: every routine can have only one exception handler. In practice, this is more an

advantage than an obstacle: it avoids huge monster-routines, with the cost of a little more

typing effort.

As assertions codes (and exceptions) are simple integer numbers, no new language constructs

have to be introduced to write error handlers that can deal with more than one error. The

build-in if...then and inspect...when already fully suffice, e.g.

some_routine is

   do

      ...

   rescue

      inspect

         exception

      when Routine_failure, Incorrect_inspect_value, ... then

         ...

      when ... then

         ...

      end

   end -- some_routine

Additionally, the EXCEPTIONS class supports a few queries checking if the last exception

is of a certain type, e.g. is_assertion and is_developer_exception. Theoretically, the

programmer could write own queries to build groups of exceptions belonging together, e.g.

is_io_error: BOOLEAN is

   do

      Result := developer_exception_name.has_prefix("Io_error")

   end -- is_io_error

In practice, this is jeopardized by the rather undefined (and probably soon obsolete) usage of 

name in raise. And because the string contents are not checked by the compiler, typos can

easily result into bugs.

Every class can have a routine default_rescue that is called automatically if a routine

doesn’t have its own rescue clause. This makes is extremely simple to implement standard

error handlers performing an object reset or other desperate measures. This is important

because even a failed routine is not allowed to violate the class invariant.
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5.4.5.6  Disabling Assertions

Assertion monitoring can be disabled by the programmer. Most Eiffel project tools allow to

specify different, increasingly more complete levels of monitoring. For instance, it is possible

to validate preconditions, but skip postconditions. However, it is not possible to skip

preconditions when postconditions are validated. It is inappropriate to demand a routine to

fulfill a postconditions if the routine cannot be sure if the caller fulfilled the precondition.

The compiler also disables assertions at one point: during routine calls in an assertion

expression. There are two reasons for that: first, it is easy to construct examples where the

called routine recursively validates the assertion where it was called from. And second, it

would conceptionally put assertions on the implementation level, although they are on the

"higher" specification level. However, Meyer does not give any considerations in how far this

jeopardizes the possible detection of bugs in the specification.

5.4.5.7  Command-Query Separation

Naturally, assertion expressions must not contain any side-effects. Otherwise, the program

would behave differently depending on assertion monitoring enabled or not. Ensuring this is

left to the programmer. But this is not difficult:

Classes are supposed to strictly distinguish between commands (procedures) that can change

the state of an object and queries (functions) that report about the current state of an object.

There are two types of side effects: concrete side-effects, such as procedure calls or

assignments, and abstract side-effects, which can change the value of a query accessible

through the public class interface.

The command-query separation principle demands that a function must not have abstract

side-effects. For instance, reading a character from a file in C is done using

character = fgetc(file);

Generally, the expression 2*fgetc(file) and fgetc(file)+fgetc(file) will not have the same

value because fgetc() implies an abstract side-effect: it moves the cursor of file to the next

character. On the other hand, in Eiffel one has to use

file.read_character

character := file.last_character

In this case, 2*file.last_character and file.last_character+file.last_character are always

the same. In other words, a question does not change the answer.
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Nevertheless, it is possible for a function to have side-effects while computing the result. It

just has to make sure that they are undone upon exit. An example is a function that traverses a

list advancing a cursor in order to find the maximum item stored in the list. Every cursor

advance is a concrete side-effect. But as long the initial cursor position is restored upon exit,

no abstract side-effects are noticeable.

If all functions of a class apply this principle (as they do in the standard libraries), the

programmer does not have to bother whether a functions induces side-effects or not. He

knows beforehand that none of them do. Other implications are easier maintenance and

simplified reuse.

5.5  Example Programs

To avoid that the analysis is based on theoretical considerations only, a few example routines

show how things actually work in practice. The example tasks have been chosen to have some

practical relevance while still being easy to implement.

5.5.1  Convert a Number

A routine takes a text string as parameter and converts it to a number This is a very simple

example for a parser. Because a low-level routine should not perform any automatic error

correction, leading and trailing white space or a plus sign (+) are not allowed.

For the error report, the value is assigned to a field or parameter named size. Error conditions

are reported to the user as shown in table 2.

Table 2: Errors and desired messages when converting a text to a number

Nr. Error condition Message reported

1
The value is not within thew

acceptable range
SIZE must be between minimum and maximum

2
Text does not denote an integer 

value

SIZE must be a number [without "character" at

position index]

3
Text does not contain any 

characters
SIZE must be a number

4 NULL or Void (denotes a bug)

The exact values for minimum and maximum depend on the language and the implementation.
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If the text contains non-digit character (case 2), the column of the first occurrence should be

provided in the internal error report. This value is not used in the above error reports, but

could be useful if for instance the value is obtained from a huge text in an editor, thus the

cursor position can be changed to the in column of the offending character. Case 4 is not

considered here as it generally denotes a bug. A user would not be able to enter NULL rather

than an empty string as in case 3.

5.5.1.1  Special Results in C

The C standard library provides at least three functions that can be used to convert a string to

a (long) integer number:

long atol(const char *text);

int sscanf(char *text, const char *format, ...);

long strtol(const char *text, char **parse_position, int base);

The one that gives most control to the programmer is strtol(). Additionally to the text to be

converted, it takes a base parameter that allows to apply it to non-decimal numbers. For our

purpose, base always is 10. The meaning of parse_position is of no relevance for result

based error handling and is set to NULL. More details about this parameter are discussed with

the next mechanism.

The use of atol() is discouraged and is only part of the standard for compatibility. It is merely

a simplification of strtol() with an undefined result if the text can not be converted. The

function sscanf() analyzes a input text according to a format specification and stores the

extracted values in variables. However, it does not provide much error information except the

number of successfully parsed characters. In particular, range errors in numeric values cause

undefined behavior. Both functions are completely unsuitable here.

Thus, the conversion can be implemented as:

long convert_size(const char *text)

{

   return strtol(text, ((char **) NULL), 10);

}

On range errors strtol() returns the constant value LONG_MAX and LONG_MIN (depending

on the sign). For all other errors the result is 0. Clearly, these results might also indicate a

successful conversion. Consequently, it is impossible to detect errors at all.

65



5.5.1.2  Status Indicators in C

Alternatively, strtol() can report values out of range by setting errno to ERANGE. With

non-numeric values, the case becomes a bit more tricky: First, some automatic error

correction is involved because strtol() skips leading white space. Then all digits are

considered to be part of the number, until a non-digit is detected or the string ends. The

examples in table 3 illustrate this:

Table 3: Results and errors detected by strtol()

Input text Error Result errno

"17" - 17 -

LONG_MAX - LONG_MAX -

"17.23" Not an integer number 17 -

"17XY" Not a number 17 -

"XY" Not a number 0 -

"" Not a number 0 -

"1234567890987654321" Out of range LONG_MAX ERANGE

"-1234567890987654321" Out of range LONG_MIN ERANGE

This results into two problems: first, an empty string returns the value 0. Second, non-numeric

characters after a couple of digits are not considered an error, like in "17XY". This might be

practical if strtol() is used together with other string functions to parse a complex string

containing several words. But here, it is inappropriate.

These two error cases can be distinguished by passing a pointer to a string as parse_position

parameter to strtol() that afterwards will point to the character after the last successfully

passed character in the input string. That way, a null byte at this position would indicate the

end of string and a fully legal text. For reasons of symmetry, we also have to skip possible

trailing white space before checking for the null byte.

long convert_size(const char *text)

{

   long size;

   char *parse_position;

   size = strtol(text, &parse_position, 10);

   if (errno == 0) {

      while (isspace(parse_position[0])) {

         parse_position += 1;
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      }

      if (parse_position[0] != ’\0’) {

         errno = EDOM;

      }

   }

   return size;

}

For reporting errors, errno has to be compared with ERANGE and EDOM:

void report_convert_size(const char *text)

{

   long size;

   errno = 0;

   size = convert_size(text);

   if (errno == ERANGE) {

      printf("SIZE must be between %ld and %ld\n", LONG_MIN, LONG_MAX);

   } else if (errno == EDOM) {

      printf("SIZE must be an integer number");

   } else {

      printf("size = %ld\n", size);

   }

}

The index of a possible non-numeric character is not available directly. But as 

parse_position points to it, the expression (parse_position - text) yields it. But there is no

way to transfer this value to the caller, as errno is just a plain integer value that cannot take

any parameters.

5.5.1.3  Traps in Basic

The val function takes a single string argument as parameter and converts it to number. As

there is no integer type in the E500 Basic, floating point numbers are also accepted.

*convertsize

   size=val (size$)

   return

When testing val with erroneous inputs, it turned out that it does not detect any kind of error

except overflow. Table 4 summarizes this behavior.
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Table 4: Results and errors detected by 

val

Input text Error Result ern

"17" - 17 -

"17.23" - 17.23 -

"17XY" Not a number 17 -

"XY" Not a number 0 -

"" No value 0 -

"17e234" Out of range - 20

Thus, it is pretty superfluous to consider further error handling.

5.5.1.4  Exceptions in Java

The Java Core API provides several routines to convert a string to a number. One of them is 

Integer.parseInt:

public static int parseInt(String text) throws NumberFormatException

It does not have any automatic error correction (like C’s strtol()) and only accepts numeric

digits in the input, optionally preceeded by a minus sign (-). The allowed range for the type 

int is available in Integer.MIN_VALUE and Integer.MAX_VALUE. Errors are indicated by

a NumberFormatException, which the below implementation delegates to the caller:

public static int convertSize(String sizeText)

{

    return Integer.parseInt(sizeText);

}

Reporting possible errors turns out to be difficult. First, the NumberFormatException does

not allow to distinguish the different error cases discussed above. Next, getMessage() only

seems to contain the string passed as parameter to parseInt(). Thus all one can do is:

public static void reportConvertSize(String sizeText)

{

   try {

      int size = convertSize(sizeText);

      System.out.println("size = " + size + "\n");

   }

   catch (NumberFormatException exception)

   {

      System.err.println("SIZE must be a numeric value between "
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                         + Integer.MIN_VALUE + " and "

                         + Integer.MAX_VALUE + "\n");

   }

}

Naturally, this is cumbersome for the programmer, and the resulting error messages are not

precise enough for the user.

5.5.2  Copy a File

A routine takes two parameters: the name of the source file to copy, and the name of the

target file under which the copy should be stored. This shows how to handle I/O errors. It also

is a good example of an initialize/process/cleanup sequence. A good error handling

mechanism should not split up these distinct three steps to keep the source code better

readable. Another important point is how the language deals with closing the files in case of 

error.

In pseudo-code, this routine can be implemented as follows:

open source-file for input;

open target-file for output;

while not end of source-file do

   read byte from source-file

   write byte to target-file

close target-file

close source-file

All systems examined allow such an implementation, with minor variations in the loop

syntax. Error conditions should be reported to the user as shown in table 5:

Table 5: Errors and desired messages when copying a file

Nr. Error condition Message reported

1 The source file cannot be opened.

Cannot read source file filename: system message2 A read error occurs

3 The source file cannot be closed

4 The target file cannot be opened

Cannot write target file filename: system message5 A write error occurs

6 The target file cannot be closed
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There are several reasons why the source file could not be opened: the file simply does not

exist, the name given by the user contained special characters not allowed (several systems

reject "sepp:hugo$:!resi\/*hinz~?rödl" as filename), the file is exclusively locked by

another process, the filename is too long, and several others. Most of them also apply for the

target file, with additions like attempting to write to a write-protected disk.

Read and write errors are relatively rare and often the cause of physical damage to the storage

media. Although such errors have a detailed physical position on the disk assigned, it does not

make much sense to report these details to the user. The only reasonable thing to do is to use a

disk-repair tool and attempt to save as many data as possible.

Although it might seem unlikely, such errors can even happen between the last successful

write access and the finishing "close file". Most systems use buffered I/O, thus a "write" does

not necessarily physically store data. Instead, the whole writing process may be deferred to

the final "close file", where the buffer is flushed.

Ignoring errors while closing an output file would cause data loss without informing the user

about that. This is far worse than "only" causing data loss but the user being aware of it.

Although there is nothing the program can do about it, the user might take appropriate actions

like attempting to copy again to a different target.

5.5.2.1  Special Results in C

To copy a file, the following functions of the standard library are involved:

FILE *fopen(const char *filename, const char *mode);

int fclose(FILE *file);

int fgetc(FILE *file);

int fputc(int character, FILE *file);

The function fopen() opens a file with a given filename for a certain mode. Among other

values, "rb" indicates read access and "wb" write access to files containing binary data. The

result is a pointer to an internal control structure that is not further documented and can only

be used as parameter to all the other I/O functions. A NULL indicates that the file could not

be opened for some reason.

To close a file opened with fopen(), the fclose() function has to be called. This releases all

resources allocated for the internal FILE structure. In case of success, fclose() returns 0,

otherwise the value of the constant EOF, which is traditionally -1. ANSI C allows EOF to be

any negative value.
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To read a single character from an input file, fgetc() is used. The file parameter is the result of

the associated call to fopen(). The result is either the character code read in range from 0 to

255 or EOF in case the file ends or an error occurred. Similarly, fputc(character,file) writes 

character to file The result is EOF in case any errors occurred. In practice, the calls to fgetc()

and fputc() would be replaced by fread() and fwrite() allowing faster blocked I/O, but the

principle remains the same.

The following results can be used to handle all I/O errors:

If the source file cannot be opened, fopen(source_name) returns NULL. 

If the target file cannot be opened, fopen(target_name) returns NULL. 

There is no way to detect a read error by examining the result of fgetc() because EOF can

also indicate a normal end of file. 

If a write error occurs, fputc() returns EOF. 

If the target file can not be closed, fclose(target_file) returns EOF. 

If the source file can not be closed, fclose(source_file) returns EOF.

The following possible results of copy_file() reflect this:

#define CFE_NONE          0

#define CFE_READ_SOURCE   1

#define CFE_WRITE_TARGET  2

Using preprocessor defines is the way commonly taken for the like things because C does not

really support constants in a way other languages do. The prefix CFE_ ("copy file error") is

necessary as there is only one global name space for such constants. Typing names of

constants uppercase is a silly C-convention. This does not make much sense because

uppercase-only text is harder to read and has a highlighting effect not really appropriate.

Enumerator types are rarely used in C due to several problems discussed by Wirth (1988) and

Meyer (1997), who omitted enumerators from Oberon and Eiffel.

The behavior of fclose(NULL) is undefined. Therefore a fclose(source_file) has to be

protected by an if (source_file != NULL). The same goes for fclose(target_file), which has

to be placed even one nesting level deeper in the if-cascade, making it impossible to separate

the cleanup-code.

int copy_file(const char *source_name, const char *target_name)

{

   FILE *source_file;

   FILE *target_file;

   int success;
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   source_file = fopen(source_name, "rb");

   if (source_file != NULL) {

      target_file = fopen(target_name, "wb");

      if (target_file != NULL) {

         int byte = fgetc(source_file);

         success = CFE_NONE;

         while ((byte != EOF) && (success == CFE_NONE))

         {

            if (fputc(byte, target_file) != EOF) {

               byte = fgetc(source_file);

            }

            else {

               success = CFE_WRITE_TARGET;

            }

         }

         if (target_file != NULL) {

            if (fclose(target_file) == EOF) {

               if (success == CFE_NONE) {

                  success = CFE_WRITE_TARGET;

               }

            }

         }

      }

      else {

         success = CFE_WRITE_TARGET;

      }

      if (source_file != NULL) {

         if (fclose(source_file) == EOF) {

            if (success == CFE_NONE) {

               success = CFE_READ_SOURCE;

            }

         }

      }

   }

   else {

      success = CFE_READ_SOURCE;

   }

   return success;

}

The following function checks the result and attempts to translate it to an error message.

void report_copy_file(const char *source_name, const char *target_name)

{

   int copy_file_status = copy_file(source_name, target_name);

   if (copy_file_status == CFE_NONE) {
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      printf("Copied \"%s\" to \"%s\"\n", source_name, target_name);

   } else {

      switch (copy_file_status) {

         case CFE_READ_SOURCE:

            printf("Cannot read source file \"%s\"", source_name);

            break;

         case CFE_WRITE_TARGET:

            printf("Cannot write target file \"%s\"", target_name);

            break;

      }

   }

}

Apparently, copy_file() completely obfuscates the control flow and needs several precautions

to avoid bugs like calling fclose(NULL). And the error messages producable in 

report_copy_file() are completely insufficient.

5.5.2.2  Status Indicators in C

All of fopen(), fgetc() and fpuc() set errno in case of trouble. This removes the ambiguity

when fgetc() returns EOF: reading errno clarifies if the end of file is reached or an read error 

occurred.

On the other hand, fclose() does not set errno. This makes it impossible to detect data-loss in

case of write errors during flushing the file buffers. Of course, this is not a problem of status

indicator based error handling rather than of specification and implementation of the C

standard library. Again, the second fopen() and the calls to fclose() have to be protected by if

statements to avoid accessing NULL pointers in case of errors.

void copy_file(const char *source_name, const char *target_name)

{

   FILE *source_file;

   FILE *target_file;

   errno = 0;

   /* Open files */

   source_file = fopen(source_name, "rb");

   if (errno == 0) {

      target_file = fopen(target_name, "wb");

      if (errno == 0) {

         /* Copy data */

         int current_character = fgetc(source_file);

         while ((current_character != EOF)  && (errno == 0))

         {

            fputc(current_character, target_file);
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            if (errno == 0) {

               current_character = fgetc(source_file);

            }

         }

         fclose(target_file);

      }

      fclose(source_file);

   }

}

When reporting errors, the strerror(errno) gives details on system level. However, because 

errno is just an integer variable, it is impossible to find out if the problem involves the source

file or the target file. The best one can do is:

void report_copy_file(const char *source_name, const char *target_name)

{

   errno = 0;

   copy_file(source_name, target_name);

   if (errno == 0) {

      printf("Copied \"%s\" to \"%s\"\n", source_name, target_name);

   } else {

      printf("%s\n", strerror(errno));

   }

}

Due to the nature of strerror(), which only accesses a predefined set of string constants, it is

not possible to include parameters like a filename in these strings. Thus the error message is

again insufficient.

Experienced C programmers might now observe that it is possible to come up with a much

better implementation combining special results and errno, while incorporating the printing

of the error message into copy_file(). However, this violates the separation of user interface

and functionality, and also does not use one mechanism consistently.

5.5.2.3  Traps in Basic

In Basic, files are access using numbers for file handles. All routines jump to the error handler

specified with on error goto if something goes wrong.

*copyfile

   open source$ for input as #1

   open target$ for output as #2

*copyline

   if eof (1) then goto *endcopy

   input #1,lin$

   print #2,lin$

   goto *copyline
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*endcopyfile

   close 2

   close 1

   return

To report errors, the numeric code ern has to be converted into a message manually,

reassembling the original messages:

*copyerror

   message$=""

   if ern =76 then message$="file "+target$+" is write protected"

   if ern =75 then message$="bad drive name"

   if ern =77 then message$="disk full"

   if message$="" then message$="error "+str$ (ern )+" in line "+str$ (erl )

   print message$

   end

Clearly, the wording does not fulfill the requirements. But worse, *copyerror cannot be a

subroutine. If an error occurs, the gosub stack is unwound, and the main context is restored.

This means that turning ern into a descriptive message can only happen at this level. Clearly,

this makes sensible error reporting completely impossible; even small programs usually have

more than one level of routine nesting. Additionally, there is no sensible way to close possible

open files.

5.5.2.4  Exceptions in Java

To read and write binary files, the Java Core API provides the classes FileInputStream and 

FileOuputStream. Both have constructors taking one parameter for the filename. The

methods read() and write() work similar to fgetc() and fputc() in C. Both classes provide a 

close() method comparable to fclose() in C.

No catch clause is required because the routine is not going to do something about possible

errors; they should only be reported to the caller. Uncaught exceptions are propagated along

the call stack automatically, so the programmer doesn’t have to provide explicit code for that.

However, the two files opened should be closed to avoid resource leaks. This can be achieved

by putting the calls to close() inside a finally block. But this is only half the solution because

we don’t know if they could have been opened at all. Attempting to do a close on a null-file

or a completely uninitialized one will cause a RuntimeException. To avoid this, the two files

are first set to null, and the code inside the finally checks this before attempting to close the 

files.
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public static void copyFile(String sourceName, String targetName)

        throws IOException

{

   FileInputStream sourceFile = null;

   FileOutputStream targetFile = null;

   try {

      // Open Files

      sourceFile = new FileInputStream(sourceName);

      targetFile = new FileOutputStream(targetName);

      // Copy data

      int currentByte = sourceFile.read();

      while (currentByte != -1) {

         targetFile.write(currentByte);

         currentByte = sourceFile.read();

      }

   }

   // Cleanup

   finally {

      if (targetFile != null) {

         targetFile.close();

      }

      if (sourceFile != null) {

         sourceFile.close();

      }

   }

}

A method calling copyFile and reporting errors or success basically only has to catch

possible IOExceptions:

public static void reportCopyFile(String sourceName, String targetName)

{

   try {

      copyFile(sourceName, targetName);

      System.out.println("Copied \"" + sourceName + "\" to \"" + targetName);

   } catch (IOException exception) {

      System.err.println(exception.getMessage());

   }

}

But as it turns out, most values returned by getMessage() are near to useless. For example, 

FileNotFoundException only returns the filename that could not be found, but does not give

any hints for the cause (like C’s strerror(errno) does). The API documentation does not

describe how getMessage() could be used otherwise to integrate its result into hand-crafted

messages. This also questions the usefulness of getLocalizedMessage(): there is no point

for it, as getMessage() does not contain any language dependant text anyway. And even if,
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the documentation does not really describe how it should be used together with all the other

routines of the internationalization package. Presumably, the programmer is supposed to pass

the original message to an automatic translation service such as http://www.babelfish.com/.

The cleanup issue has not improved much compared to C: again, the calls to close() have to

be protected by conditionals. But then, exceptions thrown during finally are ignored and

terminate the block. Consequently, if targetFile.close() fails, sourceFile.close() will never

be called.

In this example, this causes a resource leak. Even more disturbing is the case when 

FileOutputStream.close() would be called from the garbage collector (which cannot happen

here): the exception is ignored. One might think that this does not matter because all data

have already been written. But reconsidering the previous observations on buffered I/O 

streams, this is a potential case of unreported data loss - caused by the language, not the

application programmer.

5.5.3  Handle a Bug

A sample condition for acceptability is validated: a variable sepp must not have the value 10.

The name and the value are of course arbitrary. If the condition is not fulfilled, the program

can consider itself to be buggy.

5.5.3.1  C

The standard header file <assert.h> contains the declaration of the macro or function void

assert(int condition). If condition is 0, it displays a diagnostic message and immediately

terminates the program without any cleanup actions using abort(). The example bug can be 

detected:

assert(sepp != 10);

The diagnostic message depends on the implementation but usually includes the name of the

source file and the line number where the assertion failed. For instance, the widely used GNU

CC compiler gives (Stallman et al., 1998):

Assertion (sepp != 10) failed in file internal-error.c at line 14

Abnormal program termination

If the preprocessor symbol NDEBUG is defined, assert() does not produce any code. This

can be used to deactivate assertion monitoring. Obscure un/redefining NDEBUG and

including <assert.h> multiple times can be used to activate only certain assertions with others

being inactive. This however is not considered good coding style (Harbison & Steele, 1991).
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Strangely, the C standard library is not required to use this routine. Generally, bugs that could

easily be detected with assert() are specified as "implementation dependant behavior". For

instance, a buggy routine call attempting to copy a string to a NULL pointer like

strcpy(NULL, source_string)

can have various effects, such as not copying anything (and maybe losing data if the 

source_string is discarded later on), no visible effect but trash the memory addresses after 0

causing a crash much later, making the operating system terminate the program, etc.

5.5.3.2  Skipping Basic and Java

The E500 Basic doesn’t have any measures to deal with bugs. VisualBasic has an assertion

mechanism comparable to Eiffel, but lacks most of its considerations.

In Java, the situation is similar. Various approaches have been suggested to work around the

lack of assertions, usually based on throwing a programmer declared exception derived from 

RuntimeException, e.g. 

if (sepp != 10) {

   throw PreconditionException("sepp != 10");

}

Several solutions are trying to reduce the typing effort, with the simplest one being to wrap

the above conditional into a single routine which also contains a print statement. Essentially,

this reassembles C’s assert(). More sophisticated suggestions introduce preprocessors, inline

scripting languages, collaboration patterns etc, which all apparently try to ape Eiffel

assertions, for instance (Payne et al., 1998). Most of them are incomplete and cumbersome to

use for the programmer. Because of that, I don’t see any need to further discuss anything but 

original.

5.5.3.3  Eiffel

The simple example bug can be detected using

check sepp /= 10 end

However, the power and clearness of the notation used in Eiffel is probably best illustrated

with some more examples:

class STRING

   ...

   prepend(other: STRING) is

       -- Prepend other to Current
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     require

       other /= Void

     do

       ...

     ensure

       consistent_count: count = other.count + old count

     end

end -- class STRING

The routine prepend inserts a string other at the beginning of the invoking string object. The

lines 

text := "world"

text.prepend("Hello ")

would result in text containing "Hello world". Require asserts the precondition that there

actually is a text stored in other, ensure asserts the postcondition that the new length (or

character count) of the string has grown by the length of other.

The postcondition also has an optional label consistent_count, which is used in error

messages by the compiler. This is supposed to be more descriptive for the programmer than

the plain source code. 

A simple class invariant for a generic class ARRAY could be:

class ARRAY[G]

   ...

   lower, upper: INTEGER

         -- minimum and maximum legal indeces

   count: INTEGER

         -- current number of elements

   ...

invariant

   consistent_count: count = upper - lower + 1

   non_negative_count: count >= 0

end -- class ARRAY

In Eiffel, array boundary checks are not a built-in language feature rather than an application

of assertions.

5.6  Implementation
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5.6.1  Special Results in C

The implementation is straight forward: if an error is detected, the result is set to a value

documented as erroneous. All the work has to be done by the programmer, so no special

compiler features have to be implemented.

5.6.2  Status Indicators in C

Almost the same goes for status indicators: a variable or function is declared to hold the error

status. One value represents the state "no error", all other values represent some error. These

values have to be well-defined at one central place. In C, manually by the programmer. (Some

languages have mechanisms to automatize this, e.g. Ada and Eiffel).

The decision in C, to take one global variable of the type integer imposes several problems

already discussed. However, there is no conceptional limit that prevents a status indicator to

be assigned to a more flexible datatype and be used "locally", e.g. to make them part of a data

structure that is needed anyway for transactions of the same kind. Most Eiffel classes of the

standard library do this. But even the C library has an example for that: ferror(file) returns the

last error associated with a FILE structure.

An error reporting function simply converts the status to a string. In case of a simply integer,

this is trivial and can be performed by an array access. If the error datatype is more complex,

this string could also contain parameters. However, the converter has to know all possible

values beforehand.

5.6.3  Traps in Basic

There are no details available on how the E500 Basic implements error trapping. However,

one obvious way would be to remember the location of the handler set with on error goto. If

then an error occurs, the interpreter changes the control flow to this location. It demands only

a single pointer and no stack for handlers.

The on error goto 0 idiom clears this pointer. If no handler is active, the interpreter uses the

default handler described before, which halts the program. This is a very efficient way with

hardly any influence on performance and memory usage.

The resume is also straight forward: the interpreter only has to remember a pointer to

instruction that caused the error and its successor.
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The ern variable to identify the error is set by the standard routines. The erl variable to

remember the location in the source code can be kept up to date by the interpreter.

The simplicity for the implementor however is expensive for the programmer: return does not

work inside an error handler, making it impossible to terminate a subroutine - only the whole

program can quit. Resume has several inconsistencies. Error handlers cannot be nested. The

whole mechanisms cannot be used for own errors.

5.6.4  Exceptions in Java

There are several ways to implement exceptions:

5.6.4.1  Range Tables

The compiler generates a table in which the start and end address of every try block as well as

the address of the corresponding handlers are recorded. If an exception occurs, the program

counter is looked up in the table. If the appropriate range is found, the stack is unwound and

the corresponding handler is called. Otherwise, the program counter of the caller is tried,

allowing to propagate unhandled exceptions.

The advantage is that no performance overhead is imposed if no exception occurs.

Disadvantages are that the range tables have to be set up by the compiler and the loader,

which is not possible in many existing environments. Furthermore the range table requires

additional storage, which can be a problem in very small environments like many embedded

systems provide.

This approach is used by the Java virtual machine. Venners (1997) outlines the happenings,

Lindholm & Yellin (1996) describe them in more details.

5.6.4.2  Using Setjmp() and Longjmp()

This implementation is based on two functions provided by the ANSI C standard library:

int setjmp(jmp_buf environment);

void longjmp(jmp_buf environment, int status);

The function setjmp() stores the current machine environment, in particular the stack pointer

and the program counter, in a buffer of the implementation dependant type jmp_buf and then

returns 0. The function longjmp() restores the environment saved before. Thus the execution

continues in the setjmp routine where this state was saved. After a longjmp(), however, 

setjmp() returns 1. This makes the following implementation of an exception handler 

possible:
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Java source C equivalent

try {

   ...block... ;

} catch(...) {

   ...handler...;

}

if (setjmp(environment) == 0) {

   Push(environment);

   ...block... ;

   Pop(environment);

} else {

   // Execution continues here after longjmp()

   ...handler...

}

If an exception is raised in block, the following code is executed:

Pop(environment);

longjmp(environment);

If the handler can not deal with the exception, it re-raises it so that a longjmp() to the

previous setjmp() is executed, and so on (Koenig & Stroustrup, 1990).

Advantages are that the implementation can be mapped to standard C functions. Thus it is

easy to do on most existing systems (though Harbison & Steele (1991) point out that 

longjmp() and setjmp() are quite difficult to implement and don’t work correctly on all

compilers if they are invoked in a signal or interrupt handler). Disadvantage are that a 

resume is difficult to implement and that setjmp(), Push() and Pop() impose a considerable

runtime overhead even if no exception is thrown. 

This approach is used by C++, most Eiffel and some Java compilers.

5.6.4.3  Metaprogramming

Metaprogramming means the ability to treat programs as data, for example to get information

about the names and datatypes of their variables, types and routines. If a program can also

acquire information about itself, this is called reflection. These mechanisms were pioneered

by Lisp and Smalltalk and are now available in many modern languages such as Oberon and 

Java.

When an exception occurs, the system searches the call stack for a routine that can be used as

handler. A handler is recognized by its signature: a routine which can have one parameter -

the exception it knows how to deal with. Changing the control flow like resume and retry

can then be done by modifying registers such as frame pointer and program counter.

Advantages are that no runtime overhead is imposed if no exceptions occur, and no special

requirements are needed from the compiler (apart from metaprogramming facilities). It is
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even applicable to languages that do not support exceptions beforehand.

Disadvantages are that actual handling of exceptions is several times slower than with the

other implementations because a lot more code and data have to be executed and examined.

For most practical cases however it should be "fast enough". But adding exception handling

to languages that did not support it from the beginning rarely results in a consistent error

handling from the programmers’s point of view.

This approach has been used in an experimental implementation in Oberon (Hof et al., 1996).

5.6.4.4  Hidden Status Indicator

The status indicator concept described above can easily be automatized by the compiler. The

programmer is relieved from manually writing the conditional after every function call that

decides the new control flow. Still, all the advantages of the old scheme are retained.

The major disadvantage is a significant increase of the object code size. Krall & Probst (1998)

used this for a Java "just in time" compiler. But the object code bloat jeopardized the "just in

time" feature. Consequently, the next version used a different scheme based on range tables.

5.6.5  Assertions in C

In C, assert() is almost always implemented as macro. Depending on the value of the

preprocessor define NDEBUG, it either does nothing or terminates the program with a

diagnostic message containing the module name and line number. A possible declaration is:

#ifdef NDEBUG

   /* disable assertion checking */

   #define assert(condition) ((void) 0)

#else

   /* enable assertion checking */

   #define assert(condition)  \

     ((void) ((condition) ? 0 : __assert (#condition, __FILE__, __LINE__)))

   #define __assert(condition, file, line)  \

     (printf ("%s:%u: failed assertion ‘%s’\n", file, line, condition), \

      abort (), 0)

#endif

The position in the source code is obtained by two special preprocessor symbols, __FILE__

and __LINE__. As they are resolved during compilation, no performance overhead is

induced during runtime. However, only one level of the call stack is accessible, and no

information like values of variables are available.
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5.6.6  Assertions in Eiffel

In Eiffel, more effort is needed as a complete stack trace is maintained. Furthermore, the

compiler has to add code to validate the class invariant upon every routine entry and exit. But

such issues should be straight forward.

However, assertion monitoring can result into a considerable overhead. Although it depends

on code provided by the programmer to actually validate an assertion, Meyer (1997, 396)

gives the following empirical observations: monitoring only preconditions imposes about

50% performance overhead. About 75% of this overhead are due to maintaining information

about the call stack. Enabling all assertions commonly gives a 100% to 200% penalty.

Most Eiffel compilers create C code as output, thus utilizing the setjmp()/longjmp() scheme

described with exceptions (with all its disadvantages). The additional retry is then straight

forward to implement: it basically needs a label at the beginning of a routine and a goto to

re-execute it. The various issues pointed out in respect of inheritance can also be implemented

as simple "and-ing" and "or-ing" assertion expressions. The old keyword to remember the

value of a variable upon routine entry can be mapped to an automatically created local 

variable.
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6  Discussion

This chapter gives a discussion of questions raised during the analysis. For several issues, it is

not easy to decide whether they are a "good thing" or not. Solutions to some of the most

apparent problems are outlined. 

6.1  Automatic Error Correction

Automatic error correction tries to guess an action that matches the intention of the user. This

is not without trouble, and in literature there are many different opinions, some of which are

discussed here.

Teitelman, the designer of "DWIM: Do What I Mean" for the InterLisp system explains the

basic idea: "If you have made an error, you are going to have to correct it anyway. I might as

well have DWIM try to correct it. In the best case, it gets right. In the worst case, it gets

wrong and you have to undo it: but you would have had to make a correction anyway"

(quoted in Reason, 1990, 164). However, this is not always easy to implement:

"In one notorious incident, Warren [Teitelman] added a DWIM feature to the command

interpreter used at Xerox PARC. One day another hacker there typed "delete *$" to free

up some disk space. (The editor there named backup files by appending ‘$’ to the

original file name, so he was trying to delete any backup files left over from old editing

sessions.) It happened that there weren’t any editor backup files, so DWIM helpfully

reported "*$ not found, assuming you meant ’delete *’." It then started to delete all

the files on the disk!" (Raymond et al., 1999)

The problem here is the lack of undo for the "delete *" command. Although there are ways,

existing implementations like the trashcan metaphor on many desktop interfaces severely

hamper the user’s understanding (Gentner & Nielsen, 1996).

Molich & Nielsen (1990) discuss ways to correct errors novice users might make with a

hypothetic telephone index system. Basically, the user can enter a phone number and the

system displays the subscriber. The authors suggest to perform the following corrections on

user input:

1.  Extra spaces and parenthesis around the area code are removed. 

2.  The letters "o" and "O" (lower and upper-case O) are replaced by "0" (zero). 

3.  The letter "l" (lower-case L) is replaced by "1" (one).
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Here, the authors make it clear that the system is to be used by some people who may be

totally new to computers, and are not going to use it regularly. The context is extremely

restricted (phone number), and everything but a digit does not make sense. The few

corrections are simple and well-defined replace/remove operations. For example, entering "A"

would still cause an error message, and the paper devotes considerable space into the message

design. Still it can be observed that the trouble of similar shapes in "O" and "0" resulted from

mixing Roman letters with Arabian numbers several hundred years ago.

Rasmussen discusses "the fallacy of defence in depth", referring to the danger of a system’s

own defense mechanisms. Applied to the context of programming, this means the possibility

to correct errors automatically. "Humans can operate with an extremely high level of

reliability in dynamic environments when slips and mistakes have immediately visible effects

and can be corrected." If this is not the case, latent effects of errors can be left in the system.

He continues: "Analyses of major accidents typically show that the basic safety of the system

has eroded due to latent errors. A more significant contribution to safety can be expected from

efforts to decrease the duration of latent errors than from measures to decrease their basic

frequency." (quoted in Reason, 1990, 179)

A popular application of automatic error correction can be found in most web browsers when

parsing pages written in the Hypertext Markup Language (Raggett et al., 1997). Today it is an

accepted fact that most pages in the Web are broken and do not use correct HTML. Many

people think this doesn’t really matter because the browser will fix it anyway. However, it is

difficult to write other programs that read HTML input (like search engines or import filters)

as they have to parse the document in non-deterministic ways. To make things even worse,

these ways differ between programs, so it can happen that valid documents are not processed

correctly. This severely hampers exchange of information.

This seems unnecessary, as HTML is an application of SGML, which was developed far

earlier and can be considered to be its "big brother". Consequently, SGML parsers can check

HTML documents for errors. However, these tools were not used, simply because most of

them do not produce any error messages non-technophiles would understand (Bowers, 1996).

For example, the faulty HTML code excerpt

<b><i>Hello</b></i>

results in the following error messages when checked with the popular Sgmls parser via

"piping" from standard input (Clark, 1994):
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sgmls: SGML error at -, line 7 at ">":

           I end-tag implied by B end-tag; not minimizable

sgmls: SGML error at -, line 7 at "":

           I end-tag ignored: doesn’t end any open element (current is BODY)

The problem could be fixed by swapping </b> and </i>.

Thimbleby (1998c) describes his experiences with various automatic error corrections in a

popular word processor and grunts: "(despite having a PhD in computing science) I have no

idea what is going on."

This suggests that automatic error correction on the long run causes more trouble than it

solves. Although users might find it neat in the first place, it only defers problems. But later,

there is no deterministic solution anymore. Additionally, it severely hampers the

understanding of the user. Considering the above experiences, automatic error correction is

commonly used to hide that the system is defective as a whole or unable to provide a helpful

error message due to a defective implementation of error handling.

Nevertheless, there seem to be criteria where it might be useful:

There is a good chance that the input came from a human user, like in window dialogues. 

The user is not expected to use the system regularly. 

The corrective actions only work within a very restricted context (usually one field or

word) 

The corrective action is "simple", and the programmer can explain it in one short English 

sentence.

Automatic error correction in complex system demands more:

There has to be some feedback that the system performed automatic correction. 

There is an undo, if the correction did not guess the user’s intention correctly.

Shneiderman (1997) recommends a mixture of the response types "automatic correction" and

"let’s talk about it": the program opens a dialog with a descriptive error message, but also

asks "Maybe you meant that?" and displays a corrected version of the input as part of the

dialog. The user can then accept the corrected version, but still is fully aware of the erroneous

state. If the hit-rate of the correction is high, this can help new users in learning how to use

the program without having to look up the manual.
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6.2  Garbage Collection

Many languages with exception handling also support garbage collection (GC). It is generally

believed that GC is necessary to avoid resource leaks after exception. If implemented

properly, GC does not cause memory leaks, slow the program down several times, make

response times unacceptable, block all threads of a process or make the whole program

perform horribly under low memory condition (though such things happen with many

existing collectors). Joyner describes the reasoning behind garbage collection:

"One of the hallmarks of high level languages is that programmers declare data without

regard to how the data is allocated in memory. In block structured languages, local

variables are automatically allocated on the stack, and automatically deallocated when

the block exits. This relieves the programmer of the burden of allocating and

deallocating memory. Garbage collection provides equivalent relief in languages with

dynamic entity allocation." (Joyner, 1996)

Meyer also sees garbage collection as aid for programmers:

"The spirit of object technology [...] suggests relying on compilers for tasks that are

tedious and error-prone, if algorithms are available to handle them. On a large scale and

in the long run, compilers always do a better job." (Meyer, 1997, 514)

Initially, GC was designed only for memory resources. In this context it works reasonably

well, because every memory location is as good as any other. But quite recently, the concept

has been extended to be applicable for all kinds of objects and resources. Java provides

finalizers, Eiffel allows to inherit and redefine MEMORY.dispose.

The canonical example exposing GC to be dangerous is a simple output file: here, the

finalizer executes a "close file" function. Due to performance considerations, files are usually

buffered. Consequently, a final "close" can cause the buffer to be flushed, in other words:

written. This final write operation might fail, and the user’s data are lost. Though inevitable,

the garbage collector does not have any means to report this, deluding the user into believing

everything is all right.

Also, with GC one can never be sure when resources are actually released. In case of

memory, this doesn’t matter because the GC is called automatically when the system runs out

of memory. This however does not work for other resources like files. In case one forgot to

close a file, GC might not do so either for a long time, and another program might not be

allowed to read the same file and therefore fail.
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Another point is that GC is said to keep programs from crashing because it does not release

resources that are still in use. This is also regarded a feature, and apparently targets a major

problem of C++’s destructors, which are automatically called when the scope for an object

ends - even if it is still referenced by others. However, GC does not fix the real bug (which is

located in the program source code), but only hides and works around it. Instead of telling the

programmer that he wrote a defective program, GC only applies automatic error correction

and pretends that everything is all right.

Nevertheless, manual resource management is known to cause even more trouble. Reade

describes programming as a "separation of concerns" consisting of basically three things:

what has to be done, how it has to be done and the administration required for it. He says:

"Ideally, the programmer should be able to concentrate on the first of the three tasks

(describing what is to be computed) without being distracted by the other two, more

administrative, tasks. Clearly, administration is important but by separating it from the

main task we are likely to get more reliable results and we can ease the programming

problem by automating much of the administration." (quoted in Joyner, 1996)

But if this automatization results into latent errors to be introduced into the program like with

GC, this cannot be considered a solution.

Alternative implementations for general resource management have been described by e.g.

(Bronnikov & Smirnov, 1998) or (Tasker, 1999). Generally, logically related resources are

kept together in holders or a cleanup stack, where they can later be released with one routine

call. As the releasing call is part of the application code, errors could be handled as usual

(instead of being swallowed by an "invisible" concept as GC). Right now, none of the above

implementations is without serious flaws. Nevertheless, they can be considered interesting

starting points.

But all this does not mean GC is generally useless. First, it works for plain memory

management issues. Second, it could act as a complementary debugging feature with the

above holders. During the development and testing phase, it could report preliminary releases

of resources to the programmer (with a stack trace etc). On the user’s machine, it could create

automatic bug reports.

6.3  Resumption

Resumption is one possible way for an error handler to continue the program after operations

that hopefully corrected the defect. But there are some problems, both speaking in terms of

design and implementation.
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Liskov & Snyder (1979) point out that here the routine raising an error and its caller are

mutually dependant: the caller invokes the raiser to perform some task, but the raiser depends

on the error handler in the caller to fulfill it. This compromises the separation of levels of

abstractions. Lee & Anderson (1990, 200) back this up in demanding that an error handler

should not make any adjustments to the internal state of a component - in particular, when this

state might be inconsistent, as it might well be the case during handling an error. They also

observe that if the raiser expects a resume, the error handler might decide not to perform it.

For this case, Goodenough introduced a special CLEANUP handler in the raiser, which in

turn caused Liskov & Snyder to describe his proposal as overly complicated.

Stroustrup (1997, 370) describes how to implement resumption by means of function calls but

discourages its use for similar reasons, also remarking that to his experience successful

systems evolve in the opposite direction.

Another practical indicator of the trouble is the implementation problem of VisualBasic

described before. Here, execution resumes in the procedure where the error handling code is

found. If the error was propagated from another routine, this is not the routine where the error

occurred. Then resume merely acts as retry, confusing the programmer and compromising 

consistency.

Speaking in terms of object-oriented programming, the issue should be clear: When the error

occurs, the object is in an inconsistent state. If the error handler now starts to call "do

something about my problem" handlers of other objects, it must avoid to address objects

whose own consistency depends on the inconsistent caller. But in many cases, the whole

program "object" is in an inconsistent state, so the handler can not call any objects of the

current program.

The lesson seems to be: consider resume harmful. Instead, cleanup and retry.

6.4  Automatic Error Propagation

Many error handling mechanisms automatically propagate an unhandled error to the caller if

no handler deals with it in the current routine. This is distinct from manually handling an error

and deciding to "re-raise" it again. In particular, the mechanisms in Eiffel and Java support

this. However, this is not without problems:

Goodenough (1975) observes two advantages in such a behavior: first, it makes it easier to

add errors without having to modify all possible callers, and second, errors will ultimately be

passed to the main environment, which might be a debugging environment or a default

handler that reports the error to the user. But he then reconsiders that there are definite
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advantages in examining how a new error affects callers, although without specifying which

exactly. In turn, he excludes automatic propagation from his proposal.

Liskov & Snyder (1979) partially back up Goodenough’s opinion, but go into more detail: a

programmer should not need to examine implementations of routines he is about to call in

order to understand what they do. Instead, this understanding should be obtained by reading

the routine interfaces. Thus a routine signature should not only list parameters and results, but

also all errors that might be raised while executing it. The same accounts for errors possibly

raised in lower level subroutines. Different to Goodenough’s proposal, the CLU language also

supports special failure exceptions, which are not part of the signature and can be raised by

every routine.

The problem arises when considering object consistency. Necessary cleanup actions in CLU

require the programmer to handle even failure exceptions, cleanup and then raise the same

error again. Java slightly reduces this work because finally automatically re-raises the same

error. However, the language never validates consistency, and all sorts of evil things might

happen if the cleanup did not restore consistency.

Eiffel on the other hand allows to specify consistency with the class invariant. It is even

validated by the language in case developer exceptions are raised or (unless monitoring has

been turned off) assertions fail.

As a result, automatic propagation can be considered acceptable only with a reasonable

mechanism to ensure consistency before propagation.

6.5  Robustness via Compile-time Checking

A related issue to the above discussion is compile-time checking for error handlers. The

compiler can ensure that the programmer provided a handler for a certain possible error

reported from a sub-routine. Goodenough (1975) proposed a rigorous checking, where the

compiler refuses to accept possibly uncaught exceptions. Liskov & Snyder (1979) felt this

was unrealistic for "situations where no meaningful action can be taken". In turn, they

distinguished between exceptions and failures, which do not require a handler.

Gosling et al. (1996) have adopted this for Java, which distinguishes between checked and 

unchecked exceptions. They claim that certain errors should be unchecked "because, in the

judgement of the designers of Java, having to declare such exceptions would not aid

significantly in establishing the correctness of Java programs". (Apparently, they mean

robustness). In practice, this causes some confusion: Campione & Walrath (1996) speak of a

"controversy" when trying to explain the different Java exception classes in a way that infant
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programmers could understand it. They suggest to raise checked exceptions in the own code,

and discourage rasing unchecked exceptions just because one does not want to be bothered by

those annoying compiler errors. Venners (1998) gives only slightly more detailed guidelines

what to do when.

The other extreme in this discussion is Eiffel, where a lot of concern is devoted to

acceptability (to avoid the term correctness): assertions occur in numerous flavours, have

well-thought out rules concerning inheritance, are easy to use, become part of the

documentation, etc, etc. Opposed to developer exceptions: they are not part of the routine

signature, there is no compile-time checking for handlers, the programmer has to figure out

himself which errors can occur via trial-and-error, and the EXCEPTIONS class seems to

change with every second new book from Meyer. Consequently, there are no data available to

judge the robustness of an Eiffel program.

But the whole discussion seems to miss the point. From the programmer’s point of view, there

are two types of errors:

1.  Errors the programmer cares about, and for which he wants to provide a proper handler. 

2.  Errors he doesn’t care about.

An important observation is that the programmer does not necessarily care about every error

that is part of the routine interface. CLU and Java do not really support this view of the world,

and want to force the programmer to care about the same errors the library designers cared

about. A programmer’s common answer to this can be found below (coded in Java):

try {

   ...

} catch (Exception *exception) {

   // James Gosling, go home!

}

The wording of the comment varies. But generally, this represents an error handler that deals

with every error but does nothing about it. This has two effects:

1.  The compiler stops vomiting error messages. 

2.  The program obtains a family package of potential latent errors.

The first one is desired, the second one probably not. Popular consequences in practice have

already been discussed, they are most likely "for some reason it does not work" or unreported

data devastation. The problem here is not with the programmer, but with the designers of the

language and the libraries. Often no error handler is better than an error handler like the
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above: when the programmer assumes that an error is unlikely to occur in practice. If despite

this attitude the error occurs anyway, the program will still detect it, but can regard it a bug

(and deal with it as suggested before). Possibly the detection will happen slightly later, and on

a lower level. But the stack trace should reveal the real culprit.

The discussion here is not if this is good practice or not. It also is not about the cliche that

programmers are lazy, self-satisfied and overpaid. It is about the fact that programmers don’t

care about certain errors, and that it should be up to them which errors these are. Attempts to

force them to care about errors according to arbitrary rules only result in latent errors - which

are even worse.

Of course, the decision which errors to care about should not be up to the programmer alone.

They have an inherent tendency to not care about any error. But the solution should be

obvious: the errors to care about are part of the specification. In practice, this would mean that

the compiler by default makes all possible errors part of the interface, and requires to deal

with them. The programmer and the user then decide which are unimportant, and make them

unchecked errors. In turn, the compiler stops complaining about them.

Provided proper tools, data about checked and unchecked errors can be viewed at one glance,

and thus be used to judge of the robustness of the program. Essentially, this is similar to the

classic Software Fault Tree Analysis (Leveson et al., 1991), but has a higher degree of

automatization. This is nice for the user because he does not get a black box of possible false

promises. The programmer on the other hand has something solid to advertise his program

with. (Of course, it is still possible for the programmer to cheat with swallowing error

handlers. But one major motivation for that, convenience when compiling, is gone.)

6.6  Dynamic Binding and Compile-time Checking

Another apparent problem with compile-time checking for error handlers is when it comes to

dynamic binding. The trouble is that a virtual routine can have other errors in the signature

than its ancestor.

For Liskov & Snyder (1979), this is a non-issue because CLU is a procedural language.

Stroustrup (1997, 377) goes into detail when reflecting on C++:

"A virtual function may be overridden only by a function that has an 

exception-specification at least as restrictive as its own [...] exception-specification. [...]

This rule is really only common sense. If a derived class threw an exception that the

original function didn’t advertise, a caller couldn’t be expected to catch it."

93



In other words: the routine in the heir must not raise more exceptions than the ancestor. This

guarantees that an error handler never has to face errors it can not deal with. Apparently, this

is very restrictive, and it can be doubted that in practice it will always be possible to design a

class to satisfy this constraint. After all, the client programmer doesn’t "design" the errors of

library routines.

But what’s more alarming is the attitude exposed in the following excerpt:

"Importantly, exception-specifications are not required to be checked exactly across

compilation-unit boundaries. [...] The point is to ensure that adding an exception

somewhere doesn’t force a complete update of related exception specifications and a

recompilation of all potentially affected code. A system can then function in a partially

updated state relying on the dynamic (run-time) detection of unexpected exceptions. This

is essential for the maintenance of large systems in which major updates are expensive

and not all source code is accessible." (Stroustrup, 1997, 376-377)

In other words: a running system with latent errors is preferable to one that does not even

compile due to active errors.

Gosling et al. (1996) basically state the same for Java, though without any remarkable

considerations. Different to C++, Java rigorously checks all checked exceptions during

compile-time. But it also introduces more problems, for example when loading classes during

runtime: this can easily fail due to new exceptions in a throws clauses. In worst case, even

before the actual program code gets executed. Then, the programmer is unable to provide a

non-technophil error message, and the user is left to the mercy of Java’s internal default

handler (usually dumping the stack etc).

Eiffel, as already noted, cowardly dismisses the whole issue by making only assertions part of

the routine signature. As assertions are validated during runtime, the assertion expression

simply can be treated like a virtual function. But possible developer exceptions are subject to

trial-and-error. Unfortunately, Meyer (1997) does not seem to justify this anywhere.

Apparently, there is something wrong here. But it is difficult to say what exactly.

6.7  Should Errors be Objects?

On the implementation level, Basic, C and Eiffel represent errors by numbers, possibly

accompanied by a couple of variables and functions to further describe them. Java and many

others use dedicated objects to represent errors. Why would it be sensible to use objects?
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Apparent advantages of errors as objects derived from Throwable in Java are: it is simple to

pass parameters to a handler, and hierarchical handlers for multiple errors are easy to 

implement.

Meyer (1997) opposes this by observing that the EXCEPTIONS class in Eiffel does not have

any commands to change the state. It has of course several queries to check the state, such as 

exception and is_assertion. But they are set "in the background" by raise and retry. They

are not really under the control of the program; they are rather caused by events beyond its

reach. But it can be observed that Eiffel’s developer exceptions didn’t turn out to be particular

useful: passing parameters and messages to them is not really possible. (A possibly interesting

mixture can be found in Ada 95: errors are integer numbers, but have an optional "context",

that can be an object of whatever type).

It is also not very difficult to think of possible commands that can actively change the state of

an error. For instance, VisualBasic allows to assign a message and an optional reference to the

online help.

Apart from that, all error handling mechanisms evaluated here are built on the misconceptions

that one routine can cause only one error. As the example of copying a file showed, this is not

true. Especially during cleanup actions, several errors can occur in the same statement block.

None of the evaluated languages addresses this in a sensible way, either losing error

information or showing undefined behaviour. So more commands would be needed to

associate multiple errors with each other. Interestingly, Java already has a class 

SQLException, which allows to build a list of database errors using setNextException().

While it cannot be said that objects are the only or best way to express errors, Meyer’s

counter-arguments seem to be built on a rather weak foundation.

6.8  Exception = Error?

Many languages such as Ada, C++, Eiffel and Java can use a mechanism called exceptions to

deal with errors. There are two questions arising:

1.  Should exceptions be used for something else but errors? 

2.  Should errors be expressed by something else but exceptions?

There are several examples where exceptions are used to express non-error issues:

Goodenough (1975) points out some applications that might have been useful in the 1970s

lacking alternative approaches. From today’s point of view, all of them can be implemented

more elegantly using techniques such as inheritance, genericity, inter process communication
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or at least callback routines. Stroustrup (1997) describes how to flush queues or find a node in

a binary tree using exceptions. The point of this is not really clear to me because a simple 

while loop would suffice here. Java uses exceptions to indicate that a thread has been

terminated with hilarious consequences for programmers who want to handle errors in

multithreaded programs (DeRusso & Haggar, 1998). Another application in Java is 

narrowing, which is one way to find out whether a reference value is a legitimate value of the

new type during runtime (instanceof is another). This is criticised by Meyer (1997), who

compares it with Eiffel’s assignment attempts doing without exceptions.

Sensible and working examples of using exceptions for something but errors have yet to be 

found.

But exceptions are just one way of expressing errors in a language that supports them. Special 

results and status indicators are others, that generally can be used by any language. So when

should a programmer choose the others?

Venners (1998) discusses an interesting example in respect to Java, that apparently causes

some confusion in literature: is an "end of file reached" an error? He says, for a "normal"

binary file, it is not, as every such file will eventually end. Thus, FileInputStream.read()

returns the special result -1 but does not throw an exception. DataInputStream.readInt() on

the other hand throws an EOFException if it cannot find 4 bytes in the stream required to

build a 32 bit integer value. This clearly represents an input error. (Reconsidering my

analysis, it can be added that the special result of read() should be replaced by a boolean

function FileInputStream.endReached() or the like.)

To summarize: if a language supports exceptions, it should not use them for anything but

error handling, and errors should not be expressed by anything but exceptions. So called

"exceptional cases" like an "end of file reached" should be dealt with by means of status

indicators. I thus suggest to rename the technique called "exceptions" to "errors", so that this

lengthy explanations can be omitted.

6.9  Disabling Assertions

Assertions in C and Eiffel can be disabled by the programmer. As this (partially) removes the

capability of a program to detect bugs, there is an obvious question arising: is it appropriate?

The answer is a straight "yes" if the program otherwise would be too slow, and thus

inapplicable for the user. A popular example is a program to compute tomorrow’s weather

predictions that needs 48 hours with assertion monitoring, instead of 12 hours without.

Simply taking a faster computer is not an option here, as such applications already utilize the

96



fastest hardware on the market. Still, it makes sense to have monitoring on during

development and testing, when data sets are smaller and time is not that crucial.

But often, performance penalties imposed by assertions are not that dramatic. Shneiderman 

(1997) describes appropriate response times for interactive tasks:

0.1 seconds for typing, cursor motions, mouse movement etc. 

1 second for simple frequent tasks 

2-4 seconds for common tasks 

8-12 seconds for complex tasks

If the program is significantly slower, the user error rate increases, while productivity and

satisfaction decreases. These experiences also seem to justify a "yes", if the program would

otherwise exceed these limits with monitoring enabled.

However, the answer is difficult if it takes 12 hours with monitoring and 6 hours without to

compute tomorrow’s weather, or 0.07 seconds instead of 0.05 seconds to move the cursor.

Hoare compares disabling assertions in production code with "a sailing enthusiast who wears

his life-jacket when training on dry land but takes it off as soon as he goes to sea" (Hoare, 

1981). In the spirit of Rasmussen and Reason, it can also be observed that it causes otherwise

active errors to turn into latent ones. Thus it is not acceptable.

Meyer basically agrees with that, but still objects that enabled assertions might have negative

effects: "it can encourage among developers, even unconsciously, a happy-go-lucky attitude

towards correctness, justified by the knowledge that if [a bug] remains, it will be caught by

the user through an assertion violation, reported to the supplier, and fixed for the following

release. So can’t we just stop testing right now and start shipping?" (Meyer, 1997, 396) He

suggests to consider delivering two versions of the program: a fast one without monitoring,

used most of the time, and a slower one with assertions enabled the user can resort to if he

becomes suspicious.

It seems futile to further discuss this on a rational-technical level. What is needed are data that

would allow to estimate the impact of enabled assertions on the programmer’s attitude.

6.10  Towards Automatic Error Reporting

The major problem with error handling by far seems to be the generation of error messages.

None of the evaluated mechanisms has anything reasonable to offer. Operating systems

concepts and current parser generators only make things worse. Understandably,
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programmers rarely take the pain to turn this mess into a proper message. If they do, it

requires an unreasonable amount of code.

The error messages discussed as a minimum requirement usually have the form

Cannot do something:

Something must be something else

[Do] something [else] represent all concepts, operations and items that can cause errors. To

refer to them in an error message, they must have names. Finding these names and using them

consistently is probably the biggest challenge. The importance of naming conventions and

their consistent application seems to be rarely recognized among programmers (Laitinen, 

1995).

This would also allow to address the internationalization problems: phrases like "cannot" and

"must be" probably exist in every human language. All possible operations and concepts must

have equivalents in other languages, otherwise it would be impossible to write a manual for

the program. Consequently, the program should be capable of translating error messages

during runtime.

If errors are represented by objects that carry the message already with them and allow

optional attributes such as help and retryable, so the ultimate goal to display errors with one

line should eventually be reached. Most of the effort is transferred to library programmers and

translators, so that the application programmer can focus on the important tasks.

6.11  Out of Memory

One particular "funny" error is when a system runs out of memory. Despite the fact that this is

a very common problem in the real world, there are hardly any scientific reflections about it.

Basically, this represents a component allocation error. Consequently it is within the

responsibility of the user or administrator to fix or avoid it. This is not very difficult: the user

can quit some other applications running in the background or provide less memory

consuming input. Or the administrator can add more memory to the machine. So all that is

needed is a little error message announcing the problem. But in practice, this is not always 

easy:

Some operating system violently start to terminate programs if the system is low on

memory - before the program can report anything to the user. 

In many GUI-driven environments, it is impossible to open a new dialogue announcing that

the system ran out of memory because this would require memory. 
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In some languages certain considerations are needed to raise an error without memory. For

instance, in Java a throw new OutOfMemoryError can fail due to the lack of memory.

Consequently, it is popular among programs to just crash in such a case. Especially, if their

error handling is based on special results or status indicators. Or does anyone seriously expect

a programmer to check every memory allocation for success?

One general misconception is that this cannot happen on systems with virtual memory. This

wrong interpretation is not only common among programmers, but also among people who

should know better: for instance, Silberschatz & Galvin (1994, 301) suggest that virtual

memory "frees programmers from concern over memory storage limitations". Stallings (1998, 

258) describes a specific example, where insufficient memory leads to a deadlock, which in

turn makes him observe that "The best way to deal with this particular problem is to, in effect,

eliminate the possibility by using virtual memory" - as if it’s not always trivial to modify the

example so that it deadlocks again, no matter how much virtual (or physical) memory the

system has.
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7  Conclusion

This chapter shortly summarizes the research results and points out possible future directions. 

7.1  Research Results

The questions asked during the description of the research method can now be answered - at

least to some extent:

The notion of error has a different meaning pretty much everywhere. The one useful in this

context is to see the error as a model to deal with defects. Defects are conditions that make it

impossible for the program to produce proper output.

Defects are either in the design or the physical representation of the program. A program

cannot detect defects. All it can do is reflect upon the data its own current state and point out

inconsistencies. To do that, it has to provoke contradictions, which it does by comparing data

and state with expectations. These expectations have to be provided by the programmer and

are based on a few basic principles which were also outlined. Errors in the program’s

environment can be detected in the input, during allocating or accessing components. They

can be fixed by the user or administrator. Errors in the program itself are commonly referred

to as bugs. It can only detect them by rigorously validating the internal state against its

specification. Different to all other errors, bugs can only be fixed by the programmer.

Generally, it is important to attempt to detect errors as soon as possible to avoid latent errors

to remain in the system.

A program can respond to errors in several ways. Basically, an error dialogue or "gagging"

are appropriate for near to all cases. A need for warnings hints at a defective design.

Automatic error correction by the program often introduces more problems than it solves. But

there are cases where it is preferable to halt the program or reset the routine context. Though

this causes data loss, it is preferably to continuing and devastating data. In practice, programs

also respond without output nor error message ("for some reason it doesn’t work"), or

continue with latent errors. Clearly, those are bugs.

A simple scheme to design good error messages is to put them into the form "Something

must be something else", which already states what must be done in order to fix the

problem. Optionally, one or more "Cannot do something"s can describe the context in

which it occurred. This is especially important if the error depends on implementation details

not apparent to the user.
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There are some general principles to avoid defects such as simplicity and conservatism.

Others at least reduce the impact of them, like independence, redundancy and diversity.

Unfortunately, they are rarely applied in a systematic way, in particular when looking at data

formats and syntaxes of programming languages.

In this light, the current state of programming languages gives a rather sad picture. Error

reporting apparently has never been considered a serious issue, and is in fact becoming worse

comparing the quality of messages producable with C to Java or Eiffel. Though Basic and

Java manage to delegate the control flow to error handlers quite nicely, they are not sensible

about cleanup and errors during handling errors. Apart from that, none of the languages

supports both hierarchical and sequential handling of multiple errors. Eiffel at least provides a

simple, but effective framework to detect many bugs. But this doesn’t seem to be recognized

and used by many people. Many languages have subtile interferences with resource

management, commonly resulting into resource leaks, undefined behavior, loss of information

about already detected errors or inconsistent states.

A critical discussion gave a closer look to some of the most striking problems and concluded:

Automatic error correction hardly ever works. Often it seems to be used to hide that the

system is defective in its design, or unable to provide a helpful error message due to a

defective implementation of error handling. 

Garbage collection and finalizers are a major source of latent errors, and need to be

replaced by something more useful. 

Resumption does not work. It is more sensible to cleanup and retry. 

Automatic error propagation is only acceptable if object consistency is ensured. 

Current implementations of compile-time checking for the existence of error handlers only

encourage the programmer to introduce latent errors by providing "swallowing" error

handlers. Additionally, they don’t seem to work well with dynamic binding. 

The automatic generation of error messages is challenging, but should be possible. An

approach has been outlined. 

Programs running out of memory might have trouble to report this.

For most of these points, possible solutions were examined. However, some issues are still

left to be resolved by others.
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7.2  Future Directions

This thesis tried to describe the big picture of error handling, taking different views into

account: the psychological background that leads to human error; the usability issues

involved, in particular wording of error messages; programming languages and libraries

which eventually decide what really can be done. During this, many useful existing ideas and

concepts have been identified. But only few of them have been widely recognized.

What mainly needs to be done is incorporating them into programming language, libraries

and operating systems. This might sound preposterous considering the current mood in

computer science. Such dirty, low-level issues don’t fit well to the current emphasis on design

patterns, architectural styles and more and more abstractions. Alas, these things alone never

result in an executable program rather than papers full of arrows and bubbles and a reduced

understanding of the user and programmer what is really going on. It is often claimed that this

understanding is only distracting from the real task, and thus not required to utilize the output

of a black box. However, if the box cannot produce an output, this understanding is necessary

in order to fix the problem.

Clearly, the main trouble is not on a technical level, but within the current attitude towards

errors. We should stop to see them as annoyance, pretend that they do not exist or blame them

to others. Instead, the error is a useful tool to gain a deeper understanding of matters, useful to

learn from negative experiences and judging the overall quality of a concept.

102



8  References

Aho, A.V. et al. 1985. Compilers: Principles, Techniques, and Tools. Addison-Wesley.

ANSI & US Government Department of Defense. 1983. Military Standard: Ada Programming

Language, ANSI/MIL-STD-1815A-1983.

Beizer, B. 1990. Software Testing Techniques, 2nd ed.. New York, NY: Van Nostrand 

Reinhold.

Bezault, E. et al. 1995. The Eiffel Library Kernel Standard, Vintage 95. Santa Barbara, CA:

Nonprofit International Consortium for Eiffel (NICE).

Boutell, T. (ed.) 1996. PNG (Portable Network Graphics) Specification, Version 1.0. 

http://www.w3.org/TR/REC-png.html.

Bowers, N. 1996. Weblint: Quality Assurance for the World-Wide Web, Computer Networks

and ISDN Systems. Vol. 28, no. 11, 1283-1290.

Bray, T. et al. (eds.) 1998. Extensible Markup Language (XML). 

http://www.w3.org/TR/1998/REC-xml-19980210.html.

Brown, C.M. 1988. Human Computer Interface Design Guidelines. Norwood, NJ: Ablex

Publishing Corporation.

Bronnikov, G.K. & Smirnov, A.A. 1998. Shaman Library. http://starling.rinet.ru/shaman/.

Campione, M. & Walrath, K. 1996. The Java Tutorial. Addison-Wesley.

Campbell, R.H. & Randell, B. 1986. Error Recovery in Asynchronous Systems, IEEE

Transactions on Software Engineering. Vol. 12, no. 8, 811-826.

Carroll, J.M. & Aaronson, A.P. 1988. Learning by Doing with Simulated Intelligent Help,

Communications of the ACM. Vol. 31, no. 9, 1064-1079.

Chillarege, R. 1996. Orthogonal Defect Classification. In Lye, M.R. (ed.) Handbook of

Software Reliability Engineering. New York, NY: McGraw-Hill, 359-400.

Clark, J. 1994. Sgmls SGML Parser.

Dain, J.A. 1991. Syntax Error Handling in Language Translation Systems. Research Report

188. Coventry, UK: University of Warwick.

103



DeRusso, J. & Haggar, P. 1998. Multithreaded Exception Handling in Java, Java Report,

August 1998, 13-26.

Dromey, G. 1989. Program Derivation: The Development of Programs from Specifications. 

Addison-Wesley.

Eisenstadt, M. 1997. My Hairiest Bug War Stories, Communications of the ACM. Vol. 40,

no. 4, 30-37.

Gentner, D. & Nielsen, J. 1996. The Anti-Mac Interface, Communications of the ACM. Vol.

39, no. 8, 70-82.

Gilb, T. et al. (eds.) 1993. Software Inspection. Addison-Wesley.

Goodenough, J.B. 1975. Exception Handling: Issues and a Proposed Notation,

Communications of the ACM. Vol. 18, no. 12, 683-696.

Gosling, J. et al. 1996. The Java Language Specification. Addison-Wesley.

Gould, J.D. & Lewis, C. 1985. Designing for Usability: Key Principles and What Designers 

Think, Communications of the ACM. Vol. 28, no. 3, 300-311.

Halfhill, T.R. 1998. Crash Proof Computing, Byte, April 1998, 60-74.

Harbison, S.P. & Steele, G.L.Jr. 1991. C - A Reference Manual. Prentice-Hall.

Hoare, C.A.R. 1981. The Emperor’s old Cloths, Communications of the ACM. Vol. 24, no. 2, 

75-83.

Hoare, C.A.R. 1986. Mathematics of Programming, Byte, August 1986, 115-124.

Hof, M. et al. 1996. Zero-Overhead Exception Handling Using Metaprogramming. Technical

report. Linz, Austria: Johannes Kepler University.

Jézéquel, J. & Meyer, B. 1997. Design by Contract: The Lesson of Ariane, IEEE Computer.

Vol. 30, no. 2, 129-130.

Joyner, I. 1996. C++??: A Critique of C++, 3rd ed.. http://www.elj.com/cppcv3/.

Kahan, W. & Darcy, J.D. 1998. How Java’s Floating Point Hurts Everyone Everywhere.

ACM Workshop on Java for High-Performance Network Computing. Palo Alto, CA: Stanford 

University.

104



Knuth, D.E. 1989. The Errors of TeX, Software Practice Experience. Vol. 19, no. 7, 607-685.

Koenig, A. & Stroustrup, B. 1990. Exception Handling for C++ (revised). USENIX C++

Conference, 149-176.

Kogtenkov, A. 1998. Unrecognized Eiffel. 

http://www.eiffel-forum.org/archive/kogtenkov/unrecognized.htm.

Krall, A. & Probst, M. 1998. Monitors and Exceptions: How to Implement Java Efficiently.

ACM Workshop on Java for High-Performance Network Computing. Palo Alto, CA: Stanford 

University.

Kreyszig, E. 1993. Advanced Engineering Mathematics, 7th ed.. John Wiley & Sons.

Laprie, J.-C. & Kanoun, K. 1996. Software Reliability and System Reliability. In Lye, M.R.

(ed.) Handbook of Software Reliability Engineering. New York, NY: McGraw-Hill, 27-69.

Laitinen, K. 1995. Natural Naming in Software Development and Maintenence. Espoo:

Technical Research Center of Finland.

Lee, P.A. & Anderson, T. 1990. Fault Tolerance - Principles and Practice, 2nd ed.. Vienna:

Springer Verlag.

Leveson, N.G. et al. 1991. Safety Verification of Ada Programs using Software Fault Trees,

IEEE Software, July 1991, 48-59.

Lewis, C. & Norman, D.A. 1986. Designing for Errors. In Norman, D.A. & Draper, S. (eds.)

User-Centered System Design. Hillsdale, NJ: Erlbaum.

Lieberman, H. 1997. The Debugging Scandal and What to Do About It, Communications of

the ACM. Vol. 40, no. 4, 27-29.

Lindholm, T. & Yellin, F. 1996. The Java Virtual Machine Specification. Addison Wesley.

Liskov, B.H. & Snyder, A. 1979. Exception Handling in CLU, IEEE Transactions on

Software Engineering. Vol. 5, no. 6, 546-558.

Liskov, B.H. & Wing, J.M. 1994. A Behavioral Notation of Subtyping, ACM Transactions on

Programming Languages and Systems. Vol. 16, no. 6, November 1994, 1811-1841.

Meyer, B. 1992. Eiffel: The Language. Prentice-Hall.

105



Meyer, B. 1997. Object-Oriented Software Construction, 2nd ed.. Upper Saddle River, NJ: 

Prentice-Hall.

Meyer, B. 1998. Warnings are a Cop Out. 

http://www.elj.com/eiffel/bm/warnings-are-a-cop-out/.

Microsoft. 1996. Building Applications with Microsoft Access 97.

Molich, R. & Nielsen, J. 1990. Improving a Human-Computer Dialogue, Communications of

the ACM. Vol. 33, no. 3, 338-348.

Morrison, J. 1985. "EA IFF 85" Standard for Interchange Format Files. In Commodore

Amiga Inc. Amiga ROM Kernel Reference Manual Devices, 3rd ed.. Addison Wesley, 

355-379.

Norman, D.A. 1983. Design Rules Based on Analysis of Human Error, Communications of

the ACM. Vol. 26, no. 4, 254-258.

Payne, J.E. et al. 1998. Implementing Assertions for Java, Dr. Dobb’s Journal, January 1998,

40-44 101-102.

Pinker, S. 1997. How the Mind Works. New York, NY: W. W. Norton & Company Inc.

Pressman, R.S. 1997. Software Engineering - A Practitioner’s Approach (European 

Adaption), 4th ed.. New York, NY: McGraw-Hill.

Raggett, D. et al. (eds.) 1997. HTML 4.0 Specification (revised). World Wide Web

Consortium. http://www.w3.org/TR/REC-html40-971218.

Raymond, E.S. et al. 1999. The On-Line Hacker Jargon File, Version 4.1.0. 

http://www.tuxedo.org/~esr/jargon/.

Reason, J. 1990. Human Error. Cambridge, UK: Cambridge University Press.

Ritchie, D.M. 1993. The Development of the C Language. Second History of Programming

Languages Conference. Cambridge, MA.

Romanovsky, A.B. 1997. Practical Exception Handling and Resolution in Concurrent 

Programs, Computer Languages. Vol. 23, no. 1, 43-58.

Schmidt, A.P. & Bisang, P. 1998. Kreativität als Innovation, c’t. No. 18, 204-206.

106



Sharp Corporation. 1989. Taschencomputer PC-E500 Bedienungsanleitung (Pocket Computer

PC-E500 User Manual). Osaka, Japan.

Shneiderman, B. 1997. Designing the User Interface: Strategies for Effective

Human-Computer Interaction, 3rd ed.. Addison-Wesley.

Scheuning, A.J. 1996. Error Classification in the Light of ISO 9001. Conference Proceedings

of Fifth European Conference on Software Quality. European Organisation for Quality, 

255-266.

Silberschatz, A. & Galvin, P.B. 1994. Operating System Concepts, 4th ed.. Reading, MA: 

Addison-Wesley.

Sippu, S. 1981. Syntax Error Handling in Compilers. Report A-1981-1. Finland: Department

of Computer Science, University of Helsinki.

Stallings, W. 1998. Operating Systems: Internals and Design Principles, 3rd ed.. Upper

Saddle River, NJ: Prentice-Hall.

Stallman, R. et al. 1998. The GNU C Compiler. Boston, MA: Free Software Foundation.

Strong, D.M. & Miller, S.M. 1995. Exceptions and Exception Handling in Computerized

Information Processes, ACM Transactions on Information Systems. Vol. 13, no. 2, April

1995, 206-233.

Stroustrup, B. 1997. The C++ Programming Language, 3rd ed.. Addison-Wesley.

Taft, T. & Duff, R.A. (eds.) 1997. Ada 95 Reference Manual: Language and Standard 

Libraries. International Standard ISO/IEC 8652:1995. Springer Verlag.

Tasker, M. 1999. Memory Management and Cleanup. EPOC Technical Paper. London, UK:

Symbian Ltd.

Thimbleby, H. 1998a. The Detection and Elimination of Spurious Complexity. In Backhouse,

R.C. (ed.) Proceedings of Workshop on User Interfaces for Theorem Provers. Eindhoven:

University of Technology, 15-22.

Thimbleby, H. 1998b. A Critique of Java. http://www.cs.mdx.ac.uk/harold/.

Thimbleby, H. 1998c. Spare the rod, spoil the computer?. http://www.cs.mdx.ac.uk/harold/.

107



Thimbleby, H. 1999. Creating Discerning Users. http://www.cs.mdx.ac.uk/harold/srf/.

Venners, B. 1997. How the Java Virtual Machine Handles Exceptions, Javaworld, January

1997. http://www.javaworld.com/jw-01-1997/jw-01-hood.html.

Venners, B. 1998. Design Techniques: Designing with Exceptions, Javaworld, July 1998. 

http://www.javaworld.com/jw-07-1998/jw-07-techniques.html.

Weinberg, G. 1971. The Psychology of Computer Programming. New York, NY: Van

Nostrand Reinhold.

Wirth, N. 1988. From Modula to Oberon, Software Practice and Experience. Vol. 18, no. 7, 

661-670.

Zima, P.V. 1997. Moderne/Postmoderne. Tübingen, Germany: Francke Verlag.

108


